matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungGleichung v. Kreis und Kugel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Gleichung v. Kreis und Kugel
Gleichung v. Kreis und Kugel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung v. Kreis und Kugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:26 Di 09.01.2007
Autor: Timo17

1) Welche Gleichung hat der Kreis,der durch den Punkt P(-4/4) geht und den Mittelpunkt M(-1/-3) hat?

Wäre das dann die Gleichung: [(-4/4) - (-1/-3)]²= sigma² ?


2)Bestimme die Gleichung der Kugel, auf der die Punkte A und B liegen und die die Strecke AB als Durchmesser hat.
A=(-1/2/7)
B=(3/-2/5)

Durchmesser wäre dann ja B-A=(4/-4/-2)

Dann müsste doch r genau die Hälfte sein,also (2/-2/-1).

Wie komme ich nun auf die Gleichung mit beiden Punkten??

        
Bezug
Gleichung v. Kreis und Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Di 09.01.2007
Autor: VNV_Tommy

Hallo Timo!

> 1) Welche Gleichung hat der Kreis,der durch den Punkt
> P(-4/4) geht und den Mittelpunkt M(-1/-3) hat?
>  
> Wäre das dann die Gleichung: [(-4/4) - (-1/-3)]²= sigma² ?
>  

Nein. Die allgemeine Kreisgleichung lautet: [mm] (x-x_{M})^{2}+(y-y_{M})^{2}=r^{2} [/mm] oder in vektorieller Schreibweise: [mm] \vektor{x-x_{M} \\ y-y_{M}}^{2}=r^{2} [/mm]

[mm] x_{M} [/mm] und [mm] y_{M} [/mm] stehen hierbei für die Koordinaten des Kreismittelpunktes. Beides ist hier bekannt (-1 ; -3). Was dir noch fehlt ist der Kreisradius. Diesen kann du ermitteln, indem du den Abastand des Punktes P vom Mittelpunkt M bestimmst. Das sollte, denk ich, kein Problem sein.

> 2)Bestimme die Gleichung der Kugel, auf der die Punkte A
> und B liegen und die die Strecke AB als Durchmesser hat.
>  A=(-1/2/7)
>  B=(3/-2/5)
>  
> Durchmesser wäre dann ja B-A=(4/-4/-2)

Das ist der Vektor der den Durchmesser darstellt. Sein Betrag gibt dir den Durchmesser in Längeneinheiten an.
  

> Dann müsste doch r genau die Hälfte sein,also (2/-2/-1).

Das ist der Vektor der den Radius darstellt. Sein Betrag entspricht dem gesuchten Wert für den Radius der Kugel.

> Wie komme ich nun auf die Gleichung mit beiden Punkten??

Die allgemeine Kugelgleichung lautet: [mm] \vektor{x-x_{M} \\ y-y_{M} \\ z-z_{M}}^{2}=r^{2}. [/mm] Es gilt also den Mittelpunkt und den Radius zu ermitteln und dann in die Gleichung einzusetzen. Der Mittelpunkt muss, da die Strecke [mm] \overline{AB} [/mm] den Durchmesser darstellt, auf der Hälfte der Strecke [mm] \overline{AB} [/mm] liegen.

Hoffe das hilft dir weiter.

Gruß,
Tommy

Bezug
                
Bezug
Gleichung v. Kreis und Kugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:10 Di 09.01.2007
Autor: Timo17

Zu 1)

$ [mm] (x-x_{M})^{2}+(y-y_{M})^{2}=r^{2} [/mm] $

Das wäre dann ja:

(-4+1)²+(4+3)²=r² und demzufolge 9+49=r² und dann 58=r²

Wie berchne in den Abstand von Zwei Punkten??? :-( Also von P zu M?

zu 2)

Dann müsste doch r genau die Hälfte sein,also (2/-2/-1).
Damit ist der Radius 3LE.

Den Radius habe ich ja nun ermittelt.Aber wie komme ich auf den Mittelpunkt? :-(




Bezug
                        
Bezug
Gleichung v. Kreis und Kugel: Nur Punkt-Abstand beantwortet
Status: (Antwort) fertig Status 
Datum: 17:26 Di 09.01.2007
Autor: Pure

Hi Timo,
also ich kann dir nur den Abstand von 2 Punkten erklären, deshalb markiere ich jetzt mal deine Frage nicht mit "gelöst".
Ich mache das jetzt mal mit einem Zahlenbeispiel. Sagen wir, der Punkt p hat die Koordinaten (1/2/4) und M (3/5/2).
[mm] |\overrightarrow{PM}| [/mm] soll berechnet werden.
Dazu berechnen wir zunächst nur [mm] \overrightarrow{PM}: [/mm]
[mm] \overrightarrow{PM}=\vec{m}-\vec{p}= \vektor{3-1 \\ 5-2 \\ 2-4}= \vektor{2 \\ 3 \\ -2} [/mm]

Für die Strecke geht man so vor: Alle eben errechneten Koordinaten von [mm] \overrightarrow{PM} [/mm] unter die Wurzel, und dazu noch quadriert. Das sieht dann so aus:
[mm] \wurzel{2^{2}+3^{2}+2^{2}}=\wurzel{4+9+4}=4,12 [/mm] LE (Längeneinheiten).
Das Minus vor der letzten 2 löst sich ja durch das Quadrieren sowieso auf, deshalb habe ich es in der Wurzel gar nicht erst hingeschrieben.
Ich hoffe mal, das war verständlich, ansonsten... frag einfach. :-)

Liebe Grüße, Pure

Bezug
                                
Bezug
Gleichung v. Kreis und Kugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Di 09.01.2007
Autor: Timo17

Bei meinem Beispiel in AUfgabe 1 wäre das dann ja auch m-p und da würde dann (3/-7) als Kreisradius herauskommen.Aber wie sieht nun die Gleichung aus???

Bezug
                                        
Bezug
Gleichung v. Kreis und Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Di 09.01.2007
Autor: Pure

Hallo Timo,
die Lösung zu deinem Problem sieht so aus:
[mm] \overrightarrow{PM}=\vektor{3 \\ -7} [/mm]
Daraus kann man dann die Länge wieder mit der Wurzel berechnen:
[mm] |\overrightarrow{PM}|=\wurzel{3^{2}+7^{2}}=\wurzel{58}\approx [/mm] 7,6 LE.
Der Abstand von P zu M beträgt also 7,6 Längeneinheiten.
Alles klar diesmal?

Pure

Bezug
                        
Bezug
Gleichung v. Kreis und Kugel: so geht's
Status: (Antwort) fertig Status 
Datum: 18:02 Di 09.01.2007
Autor: informix

Hallo Timo17,

> Zu 1)
>  
> [mm](x-x_{M})^{2}+(y-y_{M})^{2}=r^{2}[/mm]
>  
> Das wäre dann ja:
>  
> (-4+1)²+(4+3)²=r² und demzufolge 9+49=r² und dann 58=r²
>  
> Wie berchne in den Abstand von Zwei Punkten??? :-( Also von
> P zu M?
>  

Du hast ihn soeben berechnet! ;-)
Seien [mm] P(p_1|p_2) [/mm] und [mm] Q(q_1|q_2) [/mm] zwei Punkte, dann gilt für ihren Abstand [mm] d=\wurzel{(p_1-q_1)^2+(p_2-q_2)^2} [/mm] .

Du kennst also den Radius durch [mm] r^2=58 [/mm] bereits und brauchst nur noch die Kreisgleichung hinzuschreiben:
[mm](x-x_{M})^{2}+(y-y_{M})^{2}=58[/mm]

Manchmal ist es ganz einfach... ;-)

Gruß informix

Bezug
                                
Bezug
Gleichung v. Kreis und Kugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Di 09.01.2007
Autor: Timo17

zu 1)

Ist das denn schon die komplette Gleichung,die in der Aufgabe gefordert wird oder muss ich die anders aufschreiben(z.B. mit eingesetzten werten)?


zu 2)und wie sieht das bei Aufgabe 2 aus?



Bezug
                                        
Bezug
Gleichung v. Kreis und Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Di 09.01.2007
Autor: VNV_Tommy

zu 1.)

Die Kreisgleichung lautet vollständig:

[mm] (x+1)^{2}+(y+3)^{2}=58 [/mm] bzw. [mm] \vektor{ x+1 \\ y+3}^{2}=58 [/mm]

zu 2.)
Der Radius von 3LE ist richtig. Der Vektor [mm] \overrightarrow{AB}=(4/-4/-2) [/mm] stellt den Radius, beginnend bei Punkt A mit Richtung zum Punkt B, dar. Diesen Vektor musst du also nur noch mit seiner halben Länge an den Punkt A "anlegen" um die Koordinaten des Mittelpunktes zu erhalten. Es gilt also:
[mm] M=A+\bruch{1}{2}\overrightarrow{AB} [/mm]

[mm] M=\vektor{-1 \\ 2 \\ 7}+\bruch{1}{2}[\vektor{3 \\ -2 \\ 5}-\vektor{-1 \\ 2 \\ 7}]=\vektor{-1 \\ 2 \\ 7}+\bruch{1}{2}\vektor{4 \\ -4 \\ -2}=\vektor{-1 \\ 2 \\ 7}+\vektor{2 \\ -2 \\ -1}=\vektor{1 \\ 0 \\ 6} [/mm]

Der Mittlepunkt der Kugel liegt also bei M(1; 0; 6).

Somit ergibt sich für die Kugelgleichung folgendes:
[mm] (x-1)^{2}+(y-0)^{2}+(z-6)^{2}=9 [/mm] bzw. [mm] \vektor{x-1 \\ y-0 \\ z-6}^{2}=9 [/mm]

Gruß,
Tommy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]