matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesGleichung nach h auflösen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis-Sonstiges" - Gleichung nach h auflösen
Gleichung nach h auflösen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung nach h auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 Di 20.01.2009
Autor: Amon82

Aufgabe
Aus einem Zylinder mit dem Radius r und der Höhe h wird ein Kegel mit der selben Höhe h und dem Grundkreisradius r (des Zylinders) herausgeschnitten.
(a) Geben sie den Rauminhalt des Restkörpers an
(b)Die Höhe h betrage nunmehr gerade r. Wie hoch muss ein zu einer Kugel mit dem Radius r gehöriger Kugelabschnitt sein, damit er den gleichen Rauminhalt besitzt?

Hallo.

Also Aufgabe (a) ist kein Problem, denn es gilt: Zylindervolumen minus Kegelvolumen gleich Restkörpervolumen.

Bei Aufgabe (b) komme ich ins Straucheln. Mein Ansatz ist:

Da gilt: h=r    folgt    Restkörpervolumen:           [mm] 2/3*Pi*r^3 [/mm]
                                Kugelabschnittsvolumen:    [mm] Pi/3*h^2*(3*r-h) [/mm]

Gleichsetzen der Formeln ergibt:  [mm] Pi/3*h^2*(3*r-h) [/mm] = [mm] 2/3*Pi*r^3 [/mm]

Auflösen nach 0 ergibt:                [mm] h^3 [/mm] - [mm] 3*h^2*r [/mm] + [mm] 2*r^3 [/mm] = 0

Durch Polynomdivision erhalte ich:  (h - [mm] r)*(h^2 [/mm] - 2*r*h - [mm] 2*r^2) [/mm] = 0

Nun soll ich ja nach h auflösen und genau hier liegt mein Problem. Ich weiß durch meinen Taschenrechner, dass es drei Lösungen gibt. Eine davon ist h = r. Aber ich will ja nicht raten - ich will wissen, wie und warum. Wäre nett, wenn sich jemand dafü kurz Zeit nehmen könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gleichung nach h auflösen: p/q-Formel
Status: (Antwort) fertig Status 
Datum: 21:26 Di 20.01.2009
Autor: Loddar

Hallo Amon,

[willkommenmr] !!


Das Raten der ersten Lösung bei einem höhergradigem Polynom ist ein durchaus legitimes Verfahren. Für die anderen beiden Lösungen kannst Du nun auf den "Restterm" [mm] $h^2-2*r*h-2r^2$ [/mm] die MBp/q-Formel anwenden.


Gruß
Loddar


Bezug
                
Bezug
Gleichung nach h auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:37 Di 20.01.2009
Autor: Amon82

Danke für den Willkommensgruß und auch die schnelle Reaktion.

Ich möchte nicht unverschämt sein, aber ich würde dich bitten, nochmal einen Blick auf meinen "Lösungsvorschlag" zu werfen:

Folgendes habe ich mir überlegt:  1.Lösung:        h = r
                                      
           2./3.Lösung:   h(1,2) = r [mm] \pm \wurzel{r^2 + 2*r^2} [/mm]

Danke für deine Mühe.

Bezug
                        
Bezug
Gleichung nach h auflösen: zusammenfassen
Status: (Antwort) fertig Status 
Datum: 21:40 Di 20.01.2009
Autor: Loddar

Hallo Amon!


Fasse nun noch unter der Wurzel zusammen und ziehe anschließend ein $r_$ aus der Wurzel.


Gruß
Loddar


Bezug
                                
Bezug
Gleichung nach h auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:44 Di 20.01.2009
Autor: Amon82

Also  h(1,2) = r [mm] \pm \wurzel{3*r^2} [/mm]

...ein r rausziehen? Ich bin mir nicht ganz sicher, wie du das meinst.

Bezug
                                        
Bezug
Gleichung nach h auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 Di 20.01.2009
Autor: Steffi21

Hallo,

[mm] \wurzel{3*r^{2}}=\wurzel{3}*\wurzel{r^{2}}=\wurzel{3}* [/mm] ...

dann kannst du noch r ausklammern

Steffi

Bezug
                                                
Bezug
Gleichung nach h auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Di 20.01.2009
Autor: Amon82

Hallo Steffi,

Also würde es dann so aussehen:  h (1,2) = r [mm] \pm \wurzel{3}*r [/mm]
                
Wobei ansich h(2) = r - [mm] \wurzel{3}*r [/mm] nicht möglich ist, denn muss nicht h > 0 sein? Oder habe ich da einen Denkfehler drin?

Bezug
                                                        
Bezug
Gleichung nach h auflösen: richtig erkannt
Status: (Antwort) fertig Status 
Datum: 21:52 Di 20.01.2009
Autor: Loddar

Hallo Amon!


[ok] So stimmt es; Du hast keinen Denkfehler.


Gruß
Loddar


Bezug
                                                                
Bezug
Gleichung nach h auflösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:56 Di 20.01.2009
Autor: Amon82

Ich danke euch beiden!

Wenn ich ehrlich sein darf, ich mache zur Zeit mein Abi per Fernstudium, aber die Erklärungen in den Heften sind wirklich sehr dürftig oder viel zu kompliziert (und ich meine nicht nur die Mathehefte). Meistens kann man mehr erreichen, wenn man das Thema in einem Mathebuch lernt und anschließend nur die Aufgaben der Selbstüberprüfung macht.

Lange Rede, kurzer Sinn: Vielen Dank!

Lg Martin

Bezug
                                                                        
Bezug
Gleichung nach h auflösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:07 Di 20.01.2009
Autor: Steffi21

Hallo, der Vorschlag mit dem Ausklammern kam, weil dann besser erkennbar ist [mm] (1-\wurzel{3})*r [/mm] entfällt als Lösung, Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]