Gleichung mit komplexen Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei f: [mm] \IC \to \IC [/mm] gegeben durch z [mm] \mapsto [/mm] f(z) = z|z|.
i) Man bestimme und konstruiere die Fixpunktmenge von f.
ii) Man löse für eine geg. komplexe Zahl a die Gleichung z|z|= a und folgere, dass f bijektiv ist.
iii) Man bestimme das Bild unter f des Kreises K(0,r) um den Ursprung mit Radius r.
iv) Man bestimme das Bild unter f der geraden durch 0 mit Richtungsvektor (cos [mm] \alpha, [/mm] sin [mm] \alpha) [/mm] wobei [mm] \alpha [/mm] aus [mm] [0,2\pi] [/mm] ist. |
In i) muss ich die Menge von z [mm] \in \IC [/mm] bestimmen mit f(z)=z
z= x+iy
[mm] |z|=\wurzel[]{x^2+y^2}=1 \gdw x^2+y^2=1
[/mm]
ich habe für diese Aufgabe nicht viele Ideen, und weiß nicht, wie ich das so genau machen soll.
|
|
|
|
Bei a) kommt man mit elementarer Algebra hin:
[mm]f(z) = z \ \ \Leftrightarrow \ \ z \cdot |z| = z \ \ \Leftrightarrow \ \ z \cdot \left( |z| - 1 \right) = 0[/mm]
Folgerung?
|
|
|
|
|
Aufgabe | Sei f: [mm] \IC \to \IC [/mm] gegeben durch z [mm] \mapsto [/mm] f(z) = z|z|.
i) Man bestimme und konstruiere die Fixpunktmenge von f.
ii) Man löse für eine geg. komplexe Zahl a die Gleichung z|z|= a und folgere, dass f bijektiv ist.
iii) Man bestimme das Bild unter f des Kreises K(0,r) um den Ursprung mit Radius r.
iv) Man bestimme das Bild unter f der geraden durch 0 mit Richtungsvektor (cos [mm] \alpha, [/mm] sin [mm] \alpha) [/mm] wobei [mm] \alpha [/mm] aus [mm] [0,2\pi] [/mm] ist. |
In i) muss ich die Menge von z [mm] \in \IC [/mm] bestimmen mit f(z)=z
z= x+iy
[mm] |z|=\wurzel[]{x^2+y^2}=1 \gdw x^2+y^2=1
[/mm]
ich habe für diese Aufgabe nicht viele Ideen, und weiß nicht, wie ich das so genau machen soll. > Bei a) kommt man mit elementarer Algebra hin:
>
> [mm]f(z) = z \ \ \Leftrightarrow \ \ z \cdot |z| = z \ \ \Leftrightarrow \ \ z \cdot \left( |z| - 1 \right) = 0[/mm]
>
> Folgerung?
hieraus würde doch folgen, dass
z entweder 1/-1/0 ist oder?
|
|
|
|
|
bei ii) müsste ich dann doch,
z(|z|-1)=a lösen oder?
und wie kann ich hier die bjektivität folgern?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:41 Sa 11.05.2013 | Autor: | Marcel |
Hallo,
> bei ii) müsste ich dann doch,
>
> z(|z|-1)=a lösen oder?
cool, steht es doch genau so in der Aufgabenstellung. Genauer:
Zu zeigen ist, dass es für jedes $a [mm] \in \IC$ [/mm] ein $z [mm] \in \IC$ [/mm] mit [mm] $f(z)=a\,$ [/mm] gibt.
Schreibe [mm] $a=r+is\,$ [/mm] für $r,s [mm] \in \IR$ ($r,s\,$ [/mm] kannst Du quasi als "vorgegebene Parameter"
ansehen - die sind deswegen "vorgegeben", weil ja $a [mm] \in \IC$ [/mm] "vorgegeben" wird).
Schreibe [mm] $z=x+iy\,$ [/mm] für $x,y [mm] \in \IR\,.$
[/mm]
Du hast dann die Gleichung
$$z*(|z-1|)=a$$
zu lösen, die sich äquivalent umschreibt zu
[mm] $$(x+iy)*(\sqrt{(x-1)^2+y^2})=r+is\,.$$
[/mm]
Berechne halt [mm] $(x+iy)*(\sqrt{(x-1)^2+y^2})-(r+is)$ [/mm] und bringe das in die Form
"Realteil + [mm] $i\,\;*$ [/mm] Imaginärteil" und beachte, dass eine komplexe Zahl genau dann
[mm] $=0\in \IC$ [/mm] ist, wenn sowohl ihr Realteil $=0 [mm] \in \IR$ [/mm] als auch ihr Imaginärteil $=0 [mm] \in \IR$ [/mm] ist.
Damit bekommst Du dann ein GLS in den Variablen $x,y$ mit Parameterabhängigkeit
bzgl. [mm] $r,s\,.$
[/mm]
> und wie kann ich hier die bjektivität folgern?
Naja, Surjektivität hättest Du, wenn Du beweist, dass die Gleichung [mm] $f(z)=a\,$ [/mm] für jedes
$a [mm] \in \IC$ [/mm] (mindestens) eine Lösung $z [mm] \in \IC$ [/mm] hat. Wenn Du zeigst, dass sie GENAU EINE
Lösung hat, hast Du auch die Injektivität.
Natürlich kannst Du es auch anders machen, und wirklich nur "mindestens eine Lösung" begründen
und die Injektivität nochmal separat beweisen, aber warum?
Zur Erinnerung:
$g [mm] \colon [/mm] D [mm] \to [/mm] Z$ ist sicher dann (eigtl. gilt sogar 'genau dann') bijektiv, wenn für alle $z [mm] \in [/mm] Z$
gilt, dass [mm] $|g^{-1}(\{z\})|=1$ [/mm] (nach dem Doppelpunkt folgt die Begründung!):
Denn da für alle $z [mm] \in [/mm] Z$ dann [mm] $|g^{-1}(\{z\})| \ge [/mm] 1$ ist, ist [mm] $g\,$ [/mm] dann surjektiv. Weil für
alle $z [mm] \in Z\,$ [/mm] dann [mm] $|g^{-1}(\{z\})| \le [/mm] 1$ gilt, ist [mm] $g\,$ [/mm] dann injektiv. Da [mm] $g\,$ [/mm] also injektiv
und surjektiv ist, ist [mm] $g\,$ [/mm] dann bijektiv!
Gruß,
Marcel
|
|
|
|
|
Irgendwie ist da etwas durcheinandergeraten. Du mußt [mm]z \cdot |z| = a[/mm] lösen.
Wenn man darin zum konjugiert Komplexen übergeht: [mm]\overline{z} \cdot |z| = \overline{a}[/mm], und die Gleichungen miteinander multipliziert, erhält man [mm]|z|^4 = |a|^2[/mm], also [mm]|z| = \sqrt{|a|}[/mm]. Das setzt man in die Ausgangsgleichung ein und löst nach [mm]z[/mm] auf. Der Fall [mm]a=0[/mm] ist gesondert zu betrachten. Er erledigt sich bereits früher.
Nachtrag: Man kann auch gleich in der zu lösenden Gleichung zum Betrag übergehen.
[Dateianhang nicht öffentlich]
Dateianhänge: Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
|
|
|
|
|
Hallo,
> Sei f: [mm]\IC \to \IC[/mm] gegeben durch z [mm]\mapsto[/mm] f(z) = z|z|.
> i) Man bestimme und konstruiere die Fixpunktmenge von f.
> ii) Man löse für eine geg. komplexe Zahl a die Gleichung
> z|z|= a und folgere, dass f bijektiv ist.
> iii) Man bestimme das Bild unter f des Kreises K(0,r) um
> den Ursprung mit Radius r.
> iv) Man bestimme das Bild unter f der geraden durch 0 mit
> Richtungsvektor (cos [mm]\alpha,[/mm] sin [mm]\alpha)[/mm] wobei [mm]\alpha[/mm] aus
> [mm][0,2\pi][/mm] ist.
>
> In i) muss ich die Menge von z [mm]\in \IC[/mm] bestimmen mit
> f(z)=z
> z= x+iy
> [mm]|z|=\wurzel[]{x^2+y^2}=1 \gdw x^2+y^2=1[/mm]
>
> ich habe für diese Aufgabe nicht viele Ideen, und weiß
> nicht, wie ich das so genau machen soll. > Bei a) kommt man
> mit elementarer Algebra hin:
> >
> > [mm]f(z) = z \ \ \Leftrightarrow \ \ z \cdot |z| = z \ \ \Leftrightarrow \ \ z \cdot \left( |z| - 1 \right) = 0[/mm]
>
> >
> > Folgerung?
> hieraus würde doch folgen, dass
> z entweder 1/-1/0 ist oder?
Nein, entweder $z=0$ oder [mm] $z\in\IC$ [/mm] so, dass $|z|=1$ ist.
Welches geometrische Gebilde ist letzteres denn?
Das sind doch nicht bloß [mm] $\pm [/mm] 1$ ...
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 02:14 Sa 11.05.2013 | Autor: | Marcel |
Hallo,
> Sei f: [mm]\IC \to \IC[/mm] gegeben durch z [mm]\mapsto[/mm] f(z) = z|z|.
> i) Man bestimme und konstruiere die Fixpunktmenge von f.
> ii) Man löse für eine geg. komplexe Zahl a die Gleichung
> z|z|= a und folgere, dass f bijektiv ist.
> iii) Man bestimme das Bild unter f des Kreises K(0,r) um
> den Ursprung mit Radius r.
> iv) Man bestimme das Bild unter f der geraden durch 0 mit
> Richtungsvektor (cos [mm]\alpha,[/mm] sin [mm]\alpha)[/mm] wobei [mm]\alpha[/mm] aus
> [mm][0,2\pi][/mm] ist.
>
> In i) muss ich die Menge von z [mm]\in \IC[/mm] bestimmen mit
> f(z)=z
> z= x+iy
> [mm]|z|=\wurzel[]{x^2+y^2}=1 \gdw x^2+y^2=1[/mm]
>
> ich habe für diese Aufgabe nicht viele Ideen, und weiß
> nicht, wie ich das so genau machen soll. > Bei a) kommt man
> mit elementarer Algebra hin:
> >
> > [mm]f(z) = z \ \ \Leftrightarrow \ \ z \cdot |z| = z \ \ \Leftrightarrow \ \ z \cdot \left( |z| - 1 \right) = 0[/mm]
>
> >
> > Folgerung?
> hieraus würde doch folgen, dass
> z entweder 1/-1/0 ist oder?
es gilt
$$z*(|z|-1)=0$$
[mm] $$\iff [/mm] z=0 [mm] \vee [/mm] |z|-1=0$$
[mm] $$\iff [/mm] z=0 [mm] \vee |z|=1\,.$$
[/mm]
Und irgendwie denkst Du doch "oben gar nicht so blöd, wo Du
$|z|=1 [mm] \iff x^2+y^2=1 \text{ für }z=x+iy$" [/mm] rechnest... Wie Schachu schon sagte: Was ist denn die Menge
[mm] $$\{z \in \IC:\;\;z=x+iy \text{ mit }x,y \in \IR \text{ und }x^2+y^2=1\}$$
[/mm]
"geometrisch"? (https://matheraum.de/read?i=964670...)
(Als Hinweis: Denke an sowas wie den (trigonometrischen) Pythagoras...
oder an [mm] $e^{i\phi}$ [/mm] für [mm] $\phi \in \IR\,.$)
[/mm]
Gruß,
Marcel
|
|
|
|