matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesGleichung mit imag. Lösungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Gleichung mit imag. Lösungen
Gleichung mit imag. Lösungen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung mit imag. Lösungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:38 So 24.02.2008
Autor: dyto

Hallo,

wie löst man folgende Gleichung:

[mm] x^4+8x^2+16=0 [/mm]

Die Lösung ist [mm] x_1_/_2=2i, x_3_/_4=-2i [/mm]

Wie komme ich am einfachsten zu dieser Lösung?

Eine Möglichkeit wäre ja wenn ich weiß, dass etwas imaginäres herauskommt, ich das Hornerschema anwende und halt imaginäre Lösungen ausprobiere, also [mm] i,-i,2i,-2i [/mm].

Gibt es eine einfachere Möglichkeit, wo ich durch Umformen der Gleichung zu dieser Lösung gelange?

Vielen Dank!

dyto


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Gleichung mit imag. Lösungen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:48 So 24.02.2008
Autor: MatthiasKr

Hi,
> Hallo,
>  
> wie löst man folgende Gleichung:
>  
> [mm]x^4+8x^2-16=0[/mm]
>  
> Die Lösung ist [mm]x_1_/_2=2i, x_3_/_4=-2i[/mm]
>  
> Wie komme ich am einfachsten zu dieser Lösung?
>  
> Eine Möglichkeit wäre ja wenn ich weiß, dass etwas
> imaginäres herauskommt, ich das Hornerschema anwende und
> halt imaginäre Lösungen ausprobiere, also [mm]i,-i,2i,-2i [/mm].
>  
> Gibt es eine einfachere Möglichkeit, wo ich durch Umformen
> der Gleichung zu dieser Lösung gelange?
>  
> Vielen Dank!

substituiere [mm] $z:=x^2$, [/mm] dann erhältst du eine quadratische gleichung in $z$. diese loesen, danach $x$-loesungen ermitteln.

gruss
matthias

Bezug
                
Bezug
Gleichung mit imag. Lösungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:06 So 24.02.2008
Autor: dyto

Hallo Matthias,

vielen Dank für deine schnelle Antwort.

An Substitution hatte ich auch gedacht, aber ich bin da irgendwie etwas durcheinander gekommen. Ich habe es jetzt nach deiner Antwort noch einmal gerechnet und bin zu dem richtigem Ergebnis gekommen.

Vielen Dank noch einmal!

dyto

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]