matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenGleichung mit Äquiv.Umformung?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Trigonometrische Funktionen" - Gleichung mit Äquiv.Umformung?
Gleichung mit Äquiv.Umformung? < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung mit Äquiv.Umformung?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 Sa 18.11.2006
Autor: pyro

Hallo!

Ich habe hier folgende Gleichung:

[mm]\sin x -3* \cos x =1/2[/mm]

Nun kann ich diese wie folgt lösen:
[mm] \wurzel{1- (\cos x)²} - 3* \cos x = 1/2[/mm]
Substitution: [mm]\cos x = u[/mm]
[mm]\wurzel{1-u^2}=1/2+3u[/mm]

Nun quadriere ich das Ganze (KEINE Äquivalenzumformung), und bekomme für u 2 Werte raus (-0,4622 und +0,1622). Daraus erhalte ich also je 2 Werte wo der Cosinus diesen Wert annimmt (Also 4 mögliche Lösungen). Per Probe stelle ich dann fest, dass 2 davon gültige Lösungen sind.

Nun aber meine Frage:
Geht das nicht auch eleganter? Das mit Nicht-Äquivalenzumformung und Probe ist mir nicht so ganz geheuer! Würde mich freuen wenn ihr da einen Tipp habt!
Danke schonmal

        
Bezug
Gleichung mit Äquiv.Umformung?: Antwort
Status: (Antwort) fertig Status 
Datum: 09:22 So 19.11.2006
Autor: rahu

guten morgen

sin(x)-3cos(x) = 1/2   //erweitern mit 2cos(x)
sin(x)-cos(x) = 1/2+2cos(x)
[mm] cos(\pi/2-x)-cos(x) [/mm] = 1/2 + 2cos(x)      //additionstheorem auf 'linken seite'
[mm] -2*cos(\pi-2x) [/mm] = 1/2+2cos(x)

0 = 1/2 + [mm] 2(cos(x)+cos(\pi-2x)) [/mm]           //additionstherem zur 2.
0 = 1/2 + [mm] 2(2cos(\pi-x)*cos(\pi+x)) [/mm]     // produktformel
0 = 1/2+ [mm] 4*1/2*(cos(2(\pi+x))+cos(0)) [/mm]
....

hoffe mal ich hab mich ni vertan dabei, hab aber keine zeit mehr das jetz noch zu überprüfen/zu ende zu rechnen. ;-)

viele grüße
ralf

Bezug
                
Bezug
Gleichung mit Äquiv.Umformung?: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:25 So 19.11.2006
Autor: pyro

Hallo!


Hm dem kann ich leider nicht ganz folgen. Den Sinus oben so als Cosinus darzustellen ist kein Problem.
Wie ich das auf [mm]-2\cdot{}cos(\pi-2x)[/mm] bringe weiß ich aber schon nicht so ganz.
Wenn ich dann schließlich zum Schluss komme, wie geht es da genau weiter? Dann muss ich doch das Ganze wieder weiter zerlegen, bis ich substituieren kann? Mit Additionstheremen und sin^2x + cos^2x = 1. Oder macht man das auch anders? Haben es bisher leider immer nur so gemacht wie ich es oben versucht hatte...
pyro


Bezug
                        
Bezug
Gleichung mit Äquiv.Umformung?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:27 Mi 22.11.2006
Autor: rahu

Hallo,

sorry dass ich jetzte erst antworte.

zu deiner ersten frage:

[mm] cos(bruch{\pi}{2}-x)-cos(x) [/mm]

da wendest das Additionstehorem (http://de.wikipedia.org/wiki/Formelsammlung_Trigonometrie#Summen_zweier_trigonometrischer_Funktionen_.28Identit.C3.A4ten.29)
für 2 cos funktionen an und da kommt dann hoffentlich das raus was ich da hingeschrieben hab ;-)

zum schluss hast du dann

[mm] cos(2\pi+2x) [/mm] = [mm] cos(2x)*cos(2\pi)- sin(2\pi)*sin(2x) [/mm]

[mm] cos(2\pi) [/mm] = 1; [mm] sin(2\pi) [/mm] = 0

damit ist [mm] cos(2\pi+2x) [/mm] = cos(2x)

um jetzt -1.25 = cos(2x) zu lösen setzt du cos(2x) = [mm] 1-2*(sin(x))^2 [/mm]

[mm] 2*(sin(x))^2 [/mm] = 2.25
sin(x) = [mm] \wurzel{2.25} [/mm]

.... und das ist dann die stelle wo ich leider feststellen muss mich irgenwo verrechnet zu haben ;-) vielleicht findest du ja den fehler?! ich werd bei gelegenheit auch nochmal suchen :-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]