matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenGleichung lösen/Skizzieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Komplexe Zahlen" - Gleichung lösen/Skizzieren
Gleichung lösen/Skizzieren < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung lösen/Skizzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 Mo 30.11.2009
Autor: zocca21

Aufgabe
Skizzieren sie die Menge von:

[mm] \bruch{l z - 8l}{l 2z -1 l} [/mm] kleiner gleich 2

Die l sollen Betragsstiche sein..

Ich denk mir mal, dass ein Kreis rauskommen müsste..

Hab nun mal für z = x + yi eingesetzt

Erhalte dann: [mm] \bruch{l x + yi -8 l}{l 2x + 2yi -1 l} [/mm]

[mm] \bruch{l (x -8) + yi l}{l (2x-1) + 2yi l} [/mm]

Nun kann ich ja den Betrag auflösen:

[mm] \bruch{ \wurzel{(x -8)^2 + y^2)}}{ \wurzel{(2x-1)^2 + (2y)^2 }} [/mm] kleiner gleich 4

Potenzieren beider seiten

[mm] \bruch{ (x -8)^2 + y^2 }{ (2x-1)^2 + (2y)^2} [/mm] kleiner gleich 4

Habe aber nun keine Ahnung wie ich den bruch wegbekomme :(
Hätte ich vielleicht zu Beginn den Bruch raushauen können mit multiplikation mit dem Komplex konjugierten?


        
Bezug
Gleichung lösen/Skizzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Mo 30.11.2009
Autor: XPatrickX

Hallo,

die bisherigen Rechenschritte habe ich nicht kontrolliert.

Bei der letzten Ungleichung allerdings kannst du doch mit dem Nenner multiplizieren und dann anschließend alles auf eine Seite bringen und in der Form einer Kreisgleichung schreiben.

Gruß Patrick

Bezug
                
Bezug
Gleichung lösen/Skizzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 Di 01.12.2009
Autor: zocca21

Hmm so oder:

(x-8)² + y² kleiner gleich 4 ((2x-1)² + 4y²)

x² - 16x + 64 + y² kleiner gleich 16 x² - 16x + 4 + 16y²

könnt ich umschreiben in

[mm] (x-8)^2 [/mm] + y² kleiner gleich (4x-2)² + 16y²

oder ausmultiplizieren und auf eine Seite bringen:

-15x² - 15y² kleiner gleich 60

x² - y² kleiner gleich 4

Also ein Einheitskreis mit dem Radius 2?

Danke

Bezug
                        
Bezug
Gleichung lösen/Skizzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 14:34 Di 01.12.2009
Autor: fred97

Rechne nochmal nach. Es kommt heraus:

                   [mm] $x^2+y^2 \ge [/mm] 4$

Sagt Dir das was ?

FRED

Bezug
                                
Bezug
Gleichung lösen/Skizzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Di 01.12.2009
Autor: zocca21

Ja X² + y² kommt bei mir auch raus..

Aber kleiner gleich 4 hätte ich

oder verändert sich das kleiner gleich zu größer gleich wenn ich mit (-1) durchmultipliziere?

Gruß

Vielen Dank

Bezug
                                        
Bezug
Gleichung lösen/Skizzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 Di 01.12.2009
Autor: fred97

Du hattest:

[mm] $x^2 [/mm] - 16x + 64 + [mm] y^2 \le [/mm] 16 [mm] x^2 [/mm] - 16x + 4 + [mm] 16y^2 [/mm] $

Bringt man alles von der linken Seite auf die rechte, so erhält man:

$ [mm] 0\le 15x^2+15y^2-60$ [/mm]

Wit teilen durch 15: $ [mm] 0\le x^2+y^2-4$ [/mm]

Jetzt noch die 4 nach links

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]