matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra/GeometrieGleichung lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra/Geometrie" - Gleichung lösen
Gleichung lösen < Lineare Algebra/Geom < Zentralabi NRW < VK Abivorbereitungen < Schule < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra/Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:45 So 13.01.2008
Autor: Clone

Aufgabe
Finden Sie die Lösung des folgenden Gleichungssystems:
[mm] (1-2\wurzel{3})x-y+3z=0 [/mm]
[mm] 2x+(-2-2\wurzel{3})y+3z=0 [/mm]
[mm] 2x+2y-2\wurzel{3}z=0 [/mm]

Hallo,

diese Gleichung habe ich versucht zu berechnen. Dabei habe ich zu erst die 3. Zeile von der 2. abgezogen, um dann nach y umzurechnen. Für y erhalte ich [mm] y=((3-2\wurzel{3})/(-4-2\wurzel{3}))z [/mm] .
Anschließen habe ich dieses y in die 3. Zeile eingesetzt und diese dann nach x aufgelöst: [mm] x=(\wurzel{3}-(3-2\wurzel{3})/(-4-2\wurzel{3}))z [/mm]
x und y habe ich nun in die 1. Zeile eingesetzt. Dabei  fällt auf, dass z gleich Null sein muss, aber ich weiß nicht ob das stimmen kann.
Wie kann ich nun weiterrechnen? Und habe ich bisher richtig gerechnet?

Ich danke Dir für deine Hilfe!

Gruß

        
Bezug
Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:39 So 13.01.2008
Autor: M.Rex

Hallo

Ich würde das ganze mit dem Gauss-Verfahren komplett lösen, also ohne irgendwann ins Einsetzungsverfahren abzudriften.

Also:

[mm] \vmat{(1-2\wurzel{3})x-y+3z=0\\2x+(-2-2\wurzel{3})y+3z=0\\2x+2y-2\wurzel{3}z=0} [/mm]
(GL1-GL2) und [mm] ((2*\wurzel{3})GL.1)+((3)*GL.3) [/mm]

[mm] \gdw\vmat{(1-2\wurzel{3})x-y+3z=0\\(-1-2\wurzel{3})x-(1-2\wurzel{3})y=0\\(2\wurzel{3}+18)x+(2\wurzel{3}+6)y=0} [/mm]

[mm] (Gl2(2\wurzel{3}+6)) [/mm]
[mm] (GL3*(1-2\wurzel{3})) [/mm]

[mm] \gdw\vmat{(1-2\wurzel{3})x-y+3z=0\\(-1-2\wurzel{3})(2\wurzel{3}+6)x-(1-2\wurzel{3})(2\wurzel{3}+6)y=0\\(2\wurzel{3}+18)(1-2\wurzel{3})x+(2\wurzel{3}+6)(1-2\wurzel{3})y=0} [/mm]
Jetzt rechne mal
GL2+GL3


Marius




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra/Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]