matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenGleichung lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Komplexe Zahlen" - Gleichung lösen
Gleichung lösen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung lösen: z rausfinden
Status: (Frage) beantwortet Status 
Datum: 19:56 Mi 14.05.2014
Autor: pc_doctor

Aufgabe
[mm] z\overline{z} [/mm] + [mm] 3(z-\overline{z}) [/mm] = 4-3i

Hallo,
ich soll rausfinden, welche kompl. Zahlen z diese Gleichung lösen.

Wir haben den Tipp bekommen, erst mal z als z = x+iy aufzuschreiben.

Doch das bringt mich leider nicht weiter.
Also ich habe es umgeformt zu :

(x+iy)(x-iy) + 3 ((x+iy)-(x-iy)) = 4-3i

So, wenn ich mir nun die rechte Seite anschaue , ist x = 4 und y = -3 ( Real-und Imaginärteil). Ich habe mir gedacht , die 4 und -3 in die linke Seite der Gleichung einzusetzen, aber ich weiß nicht, ob ich damit nicht auf dem Holzweg wäre.

Wäre dankbar für einen Tipp.

Vielen Dank im Voraus.

        
Bezug
Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Mi 14.05.2014
Autor: Diophant

Hallo,

> [mm]z\overline{z}[/mm] + [mm]3(z-\overline{z})[/mm] = 4-3i
> Hallo,
> ich soll rausfinden, welche kompl. Zahlen z diese
> Gleichung lösen.

>

> Wir haben den Tipp bekommen, erst mal z als z = x+iy
> aufzuschreiben.

>

> Doch das bringt mich leider nicht weiter.
> Also ich habe es umgeformt zu :

>

> (x+iy)(x-iy) + 3 ((x+iy)-(x-iy)) = 4-3i

Das ist nicht falsch. Wenn du ein wenig aufgepasst hast oder in deinen Unterlagen kramst, sollten sich sowohl für [mm] z*\overline{z} [/mm] als auch für [mm] z-\overline{z} [/mm] extrem einfache und naheligende Vereinfachungen auffinden lassen (die man aber durch stures Ausrechnen natürlich auch erhält).

> So, wenn ich mir nun die rechte Seite anschaue , ist x = 4

Nein.

> und y = -3 ( Real-und Imaginärteil).

Ebenfalls: Nein!

> Ich habe mir gedacht

> , die 4 und -3 in die linke Seite der Gleichung
> einzusetzen, aber ich weiß nicht, ob ich damit nicht auf
> dem Holzweg wäre.

Völlig auf dem Holzweg, ja.

vereinfache doch einmal die linke Seite soweit, dass du überhaupt siehst, wie dort Real- und Imaginärteil aussehen. Dann kannst du mit der linken Seite vergleichen.

Und mit ein wenig Überlegung hätte es dir auch von vorn herein zumindest hinterfragenswert vorkommen müssen, dass da nur eine Lösung herauskommt. Immerhin ist es vom Prinzip her eine quadratische Gleichung. Und so viel sei verraten: es kommen zwei Lösungen heraus.

Gruß, Diophant

Bezug
                
Bezug
Gleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:21 Mi 14.05.2014
Autor: pc_doctor

Hallo nochmal,

tatsächlich; [mm] z*\overline{z} [/mm]  ist [mm] |z|^{2}, [/mm] danke.

Damit vereinfacht sich die Gleichung zu:

[mm] |z|^{2} [/mm] +6iy = 4-3i

Ich kann aber immer noch nicht den Real-und Imaginärteil bestimmen, oder ? Mich stört das y vor 6i noch.

Mir ist halt nicht klar, ob man das einfach wie ne "normale" Gleichung lösen soll, oder ob es ein allgemeines Verfahren bei solchen Problemen gibt.

Bezug
                        
Bezug
Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Mi 14.05.2014
Autor: Diophant

Hallo,

> Hallo nochmal,

>

> tatsächlich; [mm]z*\overline{z}[/mm] ist [mm]|z|^{2},[/mm] danke.

>

> Damit vereinfacht sich die Gleichung zu:

>

> [mm]|z|^{2}[/mm] +6iy = 4-3i

>

> Ich kann aber immer noch nicht den Real-und Imaginärteil
> bestimmen, oder ?

Hast du schonmal was von

[mm] |z|=\wurzel{x^2+y^2} [/mm]

gehört? ;-)

> Mich stört das y vor 6i noch.

>

> Mir ist halt nicht klar, ob man das einfach wie ne
> "normale" Gleichung lösen soll, oder ob es ein allgemeines
> Verfahren bei solchen Problemen gibt.

Verstehen der Definitionen und Konzepte, Nachdenken, welche der Definitionen/Konzepte in Frage kommen, Gründlichkeit bei der Umsetzung und last but not least: eine ehrliche Evaluierung der erzielten Resultate. Das finde ich persönlich ein gutes Patentrezept. Und es klappt nicht nur bei komplexen Zahlen, sondern überall in der Mathematik! :-)

Gruß, Diophant

Bezug
                                
Bezug
Gleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 Mi 14.05.2014
Autor: pc_doctor

Hallo,

ja, das kenne ich auch. Ich habe die ganze Zeit überlegt, wie ich irgendwie was umformen kann, auf die andere Seite bringen kann etc , aber ich komme da auf keinen festen Boden.

Ich meine, bei dieser Gleichung:

[mm] \wurzel{x^{2} + y^{2}} [/mm]  + 6iy = 4-3i weiß ich einfach nicht, was ich machen soll.

Sorry, dass es bisschen lange bei mir dauert, aber wenn man zum ersten Mal sowas vor sich hat , braucht man halt bisschen. Wenn ich dann später den Dreh raus hab, ist das natürlich pipifax. Aber ich muss das erst einmal verstehen. Ich meine , das ist ne Gleichung mit 2 Unbekannten (ohne i), kommt mir halt bisschen spanisch vor.

Bezug
                                        
Bezug
Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Mi 14.05.2014
Autor: MathePower

Hallo pc_doctor,

> Hallo,
>  
> ja, das kenne ich auch. Ich habe die ganze Zeit überlegt,
> wie ich irgendwie was umformen kann, auf die andere Seite
> bringen kann etc , aber ich komme da auf keinen festen
> Boden.
>
> Ich meine, bei dieser Gleichung:
>  
> [mm]\wurzel{x^{2} + y^{2}}[/mm]  + 6iy = 4-3i weiß ich einfach
> nicht, was ich machen soll.
>  


Es muss doch hier so lauten:

[mm]x^{2} + y^{2} + 6iy = 4-3i[/mm]

Naheliegend ist der Vergleich von
Real- und Imaginärteil beider Seiten.


> Sorry, dass es bisschen lange bei mir dauert, aber wenn man
> zum ersten Mal sowas vor sich hat , braucht man halt
> bisschen. Wenn ich dann später den Dreh raus hab, ist das
> natürlich pipifax. Aber ich muss das erst einmal
> verstehen. Ich meine , das ist ne Gleichung mit 2
> Unbekannten (ohne i), kommt mir halt bisschen spanisch vor.


Gruss
MathePower

Bezug
                                                
Bezug
Gleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:07 Mi 14.05.2014
Autor: pc_doctor


>  
> [mm]x^{2} + y^{2} + 6iy = 4-3i[/mm]
>  
> Naheliegend ist der Vergleich von
>  Real- und Imaginärteil beider Seiten.

Hallo,

auf der linken Seite ist der Realteil 4, Imaginärteil -3

auf der rechten Seite ist der Realteil 1 ? Imaginärteil 6y.

Kann ich jetzt den Imaginärteil von der linken Seite der Gleichung in das y der rechten Seite der Gleichung einsetzen ? Irgendwie muss man ja das y rauskriegen.

Bezug
                                                        
Bezug
Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Mi 14.05.2014
Autor: abakus

>
> >
> > [mm]x^{2} + y^{2} + 6iy = 4-3i[/mm]
> >
> > Naheliegend ist der Vergleich von
> > Real- und Imaginärteil beider Seiten.

>

> Hallo,

>

> auf der linken Seite ist der Realteil 4, Imaginärteil -3

>

> auf der rechten Seite ist der Realteil 1 ? Imaginärteil
> 6y.

Letztes stimmt, Ersteres nicht.
Wenn x und y reelle Zahlen sind, dann ist [mm] $x^2+y^2$ [/mm] auch eine reelle Zahl. Da der hintere Summand 6iy "rein komplex" ist, bildet  [mm] $x^2+y^2$ [/mm] den alleinigen Realteil.
Gruß Abakus
>

> Kann ich jetzt den Imaginärteil von der linken Seite der
> Gleichung in das y der rechten Seite der Gleichung
> einsetzen ? Irgendwie muss man ja das y rauskriegen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]