matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisGleichung in zwei Variablen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Gleichung in zwei Variablen
Gleichung in zwei Variablen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung in zwei Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:50 Mi 04.01.2006
Autor: TimBuktu

Guten Tach; Ich habe versucht herauszufinden, in welchem Bereich die reellwertige Funktion [mm] f(x)=x^{3}-x^{2} [/mm] nicht injektiv ist. Das lässt sich relativ leicht lösen, wenn man die Hoch- und Tiefpunkte betrachtet. Schöner wärs aber, wenn man das direkt mit der Gleichung rauskriegen könnte. Wann gilt also: [mm] a^{3}-a^{2}=b^{3}-b^{2}? [/mm] Ich habe das etwas vereinfacht, komme aber nicht mehr weiter. [mm] a^{3}-b^{3}+b^{2}-a^{2}=0 \gdw (a-b)(a^{2}+ab+b^{2}-a-b)=0. [/mm] Fallen irgendjemand hierzu Möglichkeiten ein weiterzumachen? Vielen Dank

        
Bezug
Gleichung in zwei Variablen: y-Wert finden
Status: (Antwort) fertig Status 
Datum: 22:57 Mi 04.01.2006
Autor: mathmetzsch

Hallo,

du brauchst doch, um zu zeigen, dass f nicht injektiv ist, nur einen y-Wert zu finden, auf den zwei verschiedene x-Werte abbilden. Und das ist doch in diesem Fall nicht schwer. 0 und -1 bilden sicher auf die 0 ab.

Viele Grüße
Daniel

Bezug
                
Bezug
Gleichung in zwei Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:53 Do 05.01.2006
Autor: TimBuktu

Ja schon klar, das hatte ich ja gesagt, dass das mit der Injektivität kein Problem ist. Sorry, vielleicht hätte ich die Frage anders stellen sollen. Eigentlich gings mir im Endeffekt darum wie man die angegebene Gleichung lösen kann. Vielleicht hat ja noch jemand eine Idee. Vielen Dank Daniel.

Bezug
                        
Bezug
Gleichung in zwei Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 Do 05.01.2006
Autor: felixf

So, du hast also $(a - b) [mm] (a^2 [/mm] + a b + [mm] b^2 [/mm] - a - b - a b) = 0$, und du willst wissen wie man alle Loesungen $(a, b) [mm] \in \IR^2$ [/mm] bestimmt. Einmal sind natuerlich alle $(a, b)$ mit $a = b$ eine Loesung (das wusstest du ja schon :) ).

Angenommen, $(a, b)$ ist eine Loesung mit $a [mm] \neq [/mm] b$. Dann muss [mm] $a^2 [/mm] + a b + [mm] b^2 [/mm] - a - b - a b = 0$ gelten. Dies kannst du nun als quadratische Gleichung in $a$ auffassen: [mm] $a^2 [/mm] + a (b - 1) + (b (b - 1)) = 0$. Jetzt kannst du natuerlich alle $a$, die diese Gleichung erfuellen, in Abhaengigkeit von $b$ angeben. Und du kannst angeben zu welchem $b$ es ueberhaupt solche $a$ gibt (Diskriminante [mm] $\ge [/mm] 0$).

Beantwortet das deine Frage?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]