matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Gleichung auflösen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Gleichung auflösen
Gleichung auflösen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung auflösen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:10 Mi 19.08.2009
Autor: djmatey

Aufgabe
Bei Auflösung nach z soll x herauskommen (x konstant). Warum?

[mm] \summe_{i=0}^{12} \bruch{a_i * \bruch{x}{1+x}+b_i}{(1+z)^{i}} [/mm] = 0

Hallo zusammen, irgendwie kriege ich es gerade nicht hin, die obige Gleichung nach z aufzulösen bzw. zu zeigen, dass sie für z=x erfüllt ist.
Alle Zahlen sind reell, x muss, denke ich, positiv sein.

Für Ratschläge wäre ich sehr dankbar.

LG djmatey

        
Bezug
Gleichung auflösen: ?hmm?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:15 Mi 19.08.2009
Autor: statler

Hi,

> [mm]\summe_{i=0}^{12} \bruch{a_i * \bruch{x}{1+x}+b_i}{(1+z)^{i}}[/mm]

wieso ist das eine Gleichung? Seh ich nicht, oder bin ich ein DAU?

Gruß
Dieter

Bezug
        
Bezug
Gleichung auflösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:16 Mi 19.08.2009
Autor: fred97


> Bei Auflösung nach z soll x herauskommen (x konstant).
> Warum?
>  
> [mm]\summe_{i=0}^{12} \bruch{a_i * \bruch{x}{1+x}+b_i}{(1+z)^{i}}[/mm]
>  
> Hallo zusammen, irgendwie kriege ich es gerade nicht hin,
> die obige Gleichung nach z aufzulösen bzw. zu zeigen, dass
> sie für z=x erfüllt ist.


Ich sehe keine Gleichung, sondern nur eine Summe.

Was ist [mm] a_i, b_i [/mm] ?

FRED



>  Alle Zahlen sind reell, x muss, denke ich, positiv sein.
>  
> Für Ratschläge wäre ich sehr dankbar.
>  
> LG djmatey


Bezug
        
Bezug
Gleichung auflösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 Mi 19.08.2009
Autor: djmatey

Sorry, habe das "= 0" hinter der Summe vergessen.
Die Summe soll also 0 werden.
[mm] a_i, b_i [/mm] sind, wie ich schon geschrieben habe, relle Zahlen. Sie sind vorgegeben, also nicht variabel. Variabel ist nur z.

Danke für den Hinweis!

Bezug
                
Bezug
Gleichung auflösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:19 Mi 19.08.2009
Autor: fred97

Ohne Kenntnis der [mm] a_i [/mm] und [mm] b_i [/mm] ist Deine FRage nicht zu beantworten

FRDE

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]