matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Gleichung Trigo
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Gleichung Trigo
Gleichung Trigo < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung Trigo: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:18 Mo 23.03.2009
Autor: Dinker

Guten Abend

vereinfache:
tan (45° + [mm] \beta) [/mm] - tan (45° [mm] -\beta) [/mm]

Leider weiss ich nicht, wie ich da was schlaues anstellen kann. Leider kann ich keinen Ansatz präsentieren...
Ich hab mir mal einen Einheitskreis zur Hand genommen und mal geschaut, ob ich was erkennen kann, jedoch mit wenig Erfolg

Vielen Dank
gruss DInker

        
Bezug
Gleichung Trigo: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Mo 23.03.2009
Autor: Somebody


> Guten Abend
>  
> vereinfache:
>  tan (45° + [mm]\beta)[/mm] - tan (45° [mm]-\beta)[/mm]
>  
> Leider weiss ich nicht, wie ich da was schlaues anstellen
> kann. Leider kann ich keinen Ansatz präsentieren...
>  Ich hab mir mal einen Einheitskreis zur Hand genommen und
> mal geschaut, ob ich was erkennen kann, jedoch mit wenig
> Erfolg
>  

Hast Du denn das Additionstheorem für den Tangens schon gehabt? Falls ja: wende es auf [mm] $\tan(45^\circ+\beta)$ [/mm] und [mm] $\tan(45^\circ-\beta)$ [/mm] an. Benutze bei der weiteren Vereinfachung des resultierenden Terms, dass [mm] $\tan(45^\circ)=1$ [/mm] ist.

Bezug
                
Bezug
Gleichung Trigo: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 Fr 01.05.2009
Autor: Dinker

Guten Tag

Also ich habe es mal versucht.

[Dateianhang nicht öffentlich]

Was stimmt denn hier nicht?


Danke
Gruss Dinker

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                        
Bezug
Gleichung Trigo: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 Fr 01.05.2009
Autor: steppenhahn

Hallo!

> Was stimmt denn hier nicht?

Wo stimmt was nicht? Ich sehe keine Rechnung. Das Additionstheorem für den Tangens lautet

[mm] \tan(\alpha [/mm] + [mm] \beta) [/mm] =  [mm] \bruch{\tan(\alpha) + \tan(\beta)}{1-\tan(\alpha)*\tan(\beta)} [/mm]

bzw.

[mm] \tan(\alpha [/mm] - [mm] \beta) [/mm] =  [mm] \bruch{\tan(\alpha) - \tan(\beta)}{1+\tan(\alpha)*\tan(\beta)} [/mm]

Nun musst du deine Werte einsetzen!

Ach so, ich sehe gerade du hast es als Bild angehangen. Da hast du die Additionstheoreme falsch angewandt, schon im ersten Schritt müsste im ersten Nenner ein Minus statt eine Plus sein und beim zweiten umgekehrt ein Plus.

Viele Grüße, Stefan.

Bezug
                                
Bezug
Gleichung Trigo: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:03 Fr 01.05.2009
Autor: Dinker

Hallo?

Siehst du es nicht?

Bezug
                                        
Bezug
Gleichung Trigo: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:22 Fr 01.05.2009
Autor: steppenhahn

Hallo!

Ich hatte dir bereits geschrieben, dass die Additionstheoreme nicht richtig angewandt hast. Es ist

[mm] $\tan(45° [/mm] + [mm] \beta) [/mm] = [mm] \bruch{\tan(45°) + \tan(\beta)}{1-\tan(45°)*\tan(\beta)} [/mm] = [mm] \bruch{1+\tan(\beta)}{1-\tan(\beta)}$ [/mm]

Bei dem zweiten Summanden in der Aufgabenstellung hast du ebenfalls im Nenner + und - vertauscht.
Viele Grüße, Stefan.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]