matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieGleichung/Lösung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Zahlentheorie" - Gleichung/Lösung
Gleichung/Lösung < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung/Lösung: Richtig?
Status: (Frage) beantwortet Status 
Datum: 15:34 Mo 24.09.2012
Autor: tinakru

Aufgabe
Besitzt die folgende Gleichung eine Lösung?

[mm] x^{101} [/mm] - [mm] (x+1)^{101} [/mm] + [mm] x^2 [/mm] - 47 = 0 mod 101

Hallo zusammen,

ich hätte folgende Aufgab und habe schon etwas vorgearbeitet.

Nach dem Satz von Fermat gilt:

[mm] x^{101} [/mm] = 0 in [mm] \IZ/101\IZ [/mm]

Ebenso gilt: [mm] -(x+1)^{101} [/mm] = 0 in [mm] \IZ/101\IZ [/mm]

Element "hoch" Gruppenordnung ist 0.

Also ist die Frage äquivalent dazu, ob  

[mm] x^2 [/mm] - 47 = 0 mod 101  eine Lösung besitzt.

Also [mm] x^2 [/mm] + 54 = mod 101.

Es ist [mm] 42^2 [/mm] + 54 = 1818

Und 1818 / 101 = 18.

Also besitzt die Gleichung eine Lösung, nämlich 42.

Ich wollte mal Fragen ob das so richtig ist?

Grüße
Tina

        
Bezug
Gleichung/Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Mo 24.09.2012
Autor: Teufel

Hi!

Schau dir nochmal den kleinen Satz von Fermat an, der geht nämlich etwas anders!
Es kommt aber am Ende etwas ähnlich einfaches raus.

Bezug
                
Bezug
Gleichung/Lösung: Richtig?
Status: (Frage) beantwortet Status 
Datum: 18:28 Mo 24.09.2012
Autor: tinakru

Aufgabe
s.o.

Ah Dankeschön, der geht dann wahrscheinlich so oder:

[mm] x^{101} [/mm] = 1  in [mm] \IZ/101\IZ [/mm]

Das müsste dann so passen oder?

Bezug
                        
Bezug
Gleichung/Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Mo 24.09.2012
Autor: Teufel

Hi!

Nein, leider auch nicht. :)

Für p prim gilt [mm] $a^p \equiv [/mm] a [mm] \text{ mod } [/mm] p$ bzw. [mm] $a^{p-1} \equiv [/mm] 1 [mm] \text{ mod } [/mm] p$ falls ggT(a,p)=1 . Was heißt das nun für deine Aufgabe?

Bezug
                        
Bezug
Gleichung/Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Mo 24.09.2012
Autor: teo

Da saßen wir wohl im gleichen Examen:

Mit dem kleinen Fermat folgt [mm] x^2 \equiv [/mm] $48$ mod $101$... [mm] \Rightarrrow [/mm] keine Lösung

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]