matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Gleichung Lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis des R1" - Gleichung Lösen
Gleichung Lösen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung Lösen: Wie gehts weiter?
Status: (Frage) beantwortet Status 
Datum: 23:19 Mo 18.06.2012
Autor: jackyooo

Aufgabe
Bestimmen Sie welche xeR der Gleichung genügen:

[mm]ln(\frac{1}{2}*(e^{x+3+ln2}-1))=\frac{1}{2}*ln(e^{10} -e^5+\frac{1}{4})[/mm]

Nabend,

ich möchte die oben Stehende Gleichung lösen.
Zuerst einmal habe ich beide Seiten durch den rechten Teil der Gleichung mit dem ln geteilt und komme dann auf

[mm]\frac{ln(\frac{1}{2}*(e^{x+3+ln2}-1))}{ln(e^{10} -e^5+\frac{1}{4})}=\frac{1}{2}[/mm]

Dann habe ich die Linke Seite als e^ln(...) umgeschrieben, dann steht da:

[mm]\frac{\frac{1}{2}*(e^{x+3+ln2}-1)}{e^{10} -e^5+\frac{1}{4}}=\frac{1}{2}[/mm]

Weiter:

[mm]e^{x+3+ln2}-1=e^{10} -e^5+\frac{1}{4}[/mm]

Nur wie komm ich jetzt weiter?

        
Bezug
Gleichung Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:24 Di 19.06.2012
Autor: reverend

Hallo jackyooo,

> Bestimmen Sie welche xeR der Gleichung genügen:
>  
> [mm]ln(\frac{1}{2}*(e^{x+3+ln2}-1))=\frac{1}{2}*ln(e^{10} -e^5+\frac{1}{4})[/mm]
>  
> Nabend,
>  
> ich möchte die oben Stehende Gleichung lösen.
>  Zuerst einmal habe ich beide Seiten durch den rechten Teil
> der Gleichung mit dem ln geteilt und komme dann auf
>  
> [mm]\frac{ln(\frac{1}{2}*(e^{x+3+ln2}-1))}{ln(e^{10} -e^5+\frac{1}{4})}=\frac{1}{2}[/mm]
>  
> Dann habe ich die Linke Seite als e^ln(...) umgeschrieben,
> dann steht da:
>  
> [mm]\frac{\frac{1}{2}*(e^{x+3+ln2}-1)}{e^{10} -e^5+\frac{1}{4}}=\frac{1}{2}[/mm]

Nein, das ist keine Äquivalenzumformung!
Wenn Du den Logarithmus los werden willst, musst Du von der ursprünglichen Form ausgehen.
Dann ergibt sich:

[mm] \bruch{1}{2}(e^{x+3+\ln{2}}-1)=\wurzel{e^{10}-e^5+\bruch{1}{4}} [/mm]

Jetzt würde ich mal rechts die Wurzel entfernen (binomische Formel...) und links auf den Exponentialterm die Potenzgesetze anwenden.
Dann bist Du ziemlich schnell fertig.

> Weiter:
>  
> [mm]e^{x+3+ln2}-1=e^{10} -e^5+\frac{1}{4}[/mm]
>  
> Nur wie komm ich jetzt weiter?

Von hier gar nicht. Siehe oben.

Grüße
reverend


Bezug
                
Bezug
Gleichung Lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:26 Di 19.06.2012
Autor: jackyooo

Die Zwischenschritte verstehe ich. Nur wie kommst du auf die Wurzel?

Bezug
                        
Bezug
Gleichung Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:37 Di 19.06.2012
Autor: Richie1401

Abend,

reverend hat die 1/2 vor dem Logarithmus als Exponent des Logarithmus geschrieben, denn es gilt: [mm] a*log(x)=log(x^a) [/mm]
Ich denke dir ist bekannt, dass [mm] a^\frac{1}{2}=\wurzel{a} [/mm] ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]