matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisGleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Gleichung
Gleichung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung: 4. und 5.Grades
Status: (Frage) beantwortet Status 
Datum: 17:17 Sa 01.10.2005
Autor: der_puma

hi,

hab ma eine frage zum lösen von gleichungen.wie löst man genau eine gleichung 4. und 5. grades? ich weiss man muss eine lösung vorgeben habe ode erraten un dann polynomdivsion oder so.kann mir da jemand das mal genau sagen un auch ein beispiel geben ?

danke
christopher

        
Bezug
Gleichung: Hinweis
Status: (Antwort) fertig Status 
Datum: 17:56 Sa 01.10.2005
Autor: MathePower

Hallo der_puma,

> hab ma eine frage zum lösen von gleichungen.wie löst man
> genau eine gleichung 4. und 5. grades? ich weiss man muss
> eine lösung vorgeben habe ode erraten un dann
> polynomdivsion oder so.kann mir da jemand das mal genau
> sagen un auch ein beispiel geben ?

für Gleichungen ab 5. Grades gibt es keine geschlossenen Formeln.
Da muß man ein i.d.R. ein Näherungsverfahren anwenden, um die Nullstellen zu finden.

Gleichungen 4. Grades sind zwar formal lösbar. Diese Formeln sind aber höchst umständlich.

[mm]a\;x^{4}\;+\;b\;x^3\;+\;c\;x^2\;+\;d\;x\;+\;e\;=\;0[/mm]

Dies ist äquivalent mit (Division durch a):

[mm]x^{4}\;+\;A\;x^3\;+\;B\;x^2\;+\;C\;x\;+\;D\;= \;0[/mm]

Durch die Substitution [mm]x\;=\;y\;-\frac{A}{4}[/mm] geht die Gleichung über in:

[mm]y^{4}\;+\;p\;y^2\;+\;y\;x\;+\;r\;= \;0[/mm]

welche sich als Differenz zweier Quadrate darstellen läßt:

[mm] \begin{gathered} y^4 \; + \;p\;y^2 \; + \;q\;y\; + \;r\; = \;\left( {y^2 \; + \;\frac{\eta } {2}} \right)^2 \; + \;\left( {p\; - \;\eta } \right)\;y^2 \; + \;q\;y\; + \;\left( {r\; - \;\frac{{\eta ^2 }} {4}} \right) \hfill \\ = \;\left( {y^2 \; + \;\frac{\eta } {2}} \right)^2 \; - \;\left( {\left( {\eta \; - \;p} \right)\;y^2 \; - \;q\;y\; + \;\left( {\;\frac{{\eta ^2 }} {4}\; - \;r} \right)} \right) \hfill \\ \end{gathered} [/mm]

Der letzte Klammerausdruck muß ein vollständiges Quadrat sein. Dies ist gewährleistet, wenn [mm]\eta[/mm] gemäß

[mm]\left( {\eta \; - \;p} \right)\;\left( {\;\eta ^2 \; - \;4\;r} \right)\; = \;q^2[/mm]

gewählt wird. Hierzu ist das Lösen einer kubischen Gleichung erforderlich.

Dann folgt:

[mm] \begin{gathered} y^4 \; + \;p\;y^2 \; + \;q\;y\; + \;r\; = \;\left( {y^2 \; + \;\frac{\eta } {2}} \right)^2 \; - \;\left( {\alpha \;y\; + \;\beta } \right)^2 \hfill \\ = \;\left( {y^2 \; + \;\alpha \;y\; + \;\beta \; + \;\frac{\eta } {2}} \right)\;\left( {y^2 \; - \;\alpha \;y\; - \;\beta \; + \;\frac{\eta } {2}} \right) \hfill \\ \end{gathered} [/mm]

mit

[mm] \begin{gathered} \alpha ^2 \; = \;\eta \; - \;p \hfill \\ \beta ^2 \; = \;\frac{{\eta ^2 }} {4}\; - \;r \hfill \\ \end{gathered} [/mm]

Die Lösungen der reduzierten Gleichung 4. Grades ergeben sich dann als Lösungen der beiden quadratischen Gleichungen.

Gruß
MathePower



Bezug
                
Bezug
Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 Sa 01.10.2005
Autor: der_puma

hi,

schonam danke,aber geht das nicht leichert ?

ich mein eine gleichung 4.grades is doch darstellbar als
(x-x1) (x-x2) (x-x3) (x-x4)
also geht es nicht auch dass man eine gleichung 4.grades ganz einfach duch (x²-(eine lösung)) teil un dann ne quadratische gleichung löst????

gruß christopher

Bezug
                        
Bezug
Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Sa 01.10.2005
Autor: Zwerglein

Hi, Puma,

trägst Du eigentlich auch mal adidas-Schuhe?

Aber zu Deiner Frage: Mathe-Power hat Dir gezeigt, wie man vorgehen würde, wenn man keine Lösungen raten kann. Zum Glück kommt das selten vor! Daher hier ein Beispiel für eine Gleichung 4. Grades, wo Du "auf übliche Art" zum Ziel kommst:
[mm] x^{4} [/mm] - [mm] 5x^{3} [/mm] + [mm] 4x^{2} [/mm] + 7x - 3 = 0
Du rätst zunächst z.B. [mm] x_{1} [/mm] = -1, denn:
[mm] (-1)^{4} [/mm] - [mm] 5*(-1)^{3} [/mm] + [mm] 4*(-1)^{2} [/mm] + 7*(-1) - 3 = 0
Daher muss die Polynomdivision
[mm] (x^{4} [/mm] - [mm] 5x^{3} [/mm] + [mm] 4x^{2} [/mm] + 7x - 3) : (x + 1) aufgehen.
Ergebnis dieser Division: [mm] x^{3} [/mm] - [mm] 6x^{2} [/mm] + 10x - 3

Nun musst Du diesen Term =0 setzen:
[mm] x^{3} [/mm] - [mm] 6x^{2} [/mm] + 10x - 3 = 0.

Wieder kannst Du eine Lösung raten; diesmal ist es: [mm] x_{2} [/mm] = 3, denn:
[mm] 3^{3} [/mm] - [mm] 6*3^{2} [/mm] + 10*3 - 3 = 0.

Erneute Polynomdivision:
[mm] (x^{3} [/mm] - [mm] 6x^{2} [/mm] + 10x - 3) : (x - 3) = [mm] x^{2} [/mm] - 3x + 1

Die restlichen Lösungen kriegst Du nun mit p/q-Formel (oder auch mit der "Mitternachtsformel"):
[mm] x^{2} [/mm] - 3x + 1 = 0

[mm] x_{3/4} [/mm] = [mm] \bruch{3 \pm \wurzel{5}}{2} [/mm]

mfG!
Zwerglein


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]