matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisGleichmäßige Stetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Gleichmäßige Stetigkeit
Gleichmäßige Stetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichmäßige Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:20 Do 19.01.2006
Autor: Micchecker

Hi!

Ich muss folgende Funktionen auf gleichmäßige Stetigkeit hin untersuchen:

h: IR \ {0} ---> IR
x ---> [mm] 1/(x^2) [/mm]

g: IR ---> IR
x ---> |x|

f: IR ---> IR
x ---> [mm] x^7 [/mm]


Wie mache ich das am Besten?

Gruß

        
Bezug
Gleichmäßige Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:30 Do 19.01.2006
Autor: Julius

Hallo!

Alle diese Aufgaben wurden vor wenigen Tagen/Stunden hier im Matheraum gelöst. Such mal ein bisschen...

Ansonsten sind eigene Ansätze vonnöten, und ich bitte dich beim nächsten Mal nicht so viele Aufgaben in den gleichen Strang zu stellen, sondern lieber alle einzeln. Dann bekommst du auch eher eine Antwort.

Liebe Grüße
Julius

Bezug
        
Bezug
Gleichmäßige Stetigkeit: Sorry + Bitte an Moderatoren
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:33 Do 19.01.2006
Autor: Julius

Hallo!

Ich sehe gerade, dass die Aufgaben, die gelöst wurden, doch ein wenig differierten (auch wenn sie doch sehr ähnlich sind). Daher wäre es nett, wenn ein Moderator den Status der Frage wieder auf "unbeantwortet" stellt. Danke! Meine Bitte bezüglich der Masse an Aufgaben und den eigenen Ansätzen gilt trotzdem für die Zukunft.

Liebe Grüße
Julius

Bezug
        
Bezug
Gleichmäßige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Do 19.01.2006
Autor: mathiash

Hallo Jonas,

am besten schreibst Du Dir die Definition von glm. Stetigkeit nochmal hin:

[mm] f\colon D\to \IR [/mm] glm. stetig auf D gdw es zu jedem [mm] \epsilon [/mm] >0 ein [mm] \delta> [/mm] 0 gibt, so dass
fuer alle   [mm] x,y\in [/mm] D    mit    [mm] |x-y|\leq \delta [/mm]      dann auch        [mm] |f(x)-f(y)|\leq\epsilon [/mm]       gilt.

Schauen wir uns exemplarisch die erste Fkt   [mm] x\mapsto \frac{1}{x^2} [/mm] auf [mm] D=\IR\setminus\{0\} [/mm]
an: Angenommen, sie waere glm. stetig. Setzen wir [mm] y=x+\delta [/mm] und schauen wir, was
bei [mm] x\to [/mm] 0 geschieht:

[mm] |f(x)-f(x+\delta)| [/mm] = [mm] \left | \frac{(x+\delta)^2-x^2}{x^2\cdot (x+\delta)^2} \right [/mm] |

= [mm] \left | \frac{2x\cdot \delta -\delta^2}{x^2(x+\delta)^2}\right [/mm] |

= [mm] \left | \frac{\delta (2-\delta)}{x\cdot (x+\delta)^2}\right [/mm] | und das divergiert offenbar fuer
jedes [mm] \delta [/mm] > 0  bei [mm] x\to [/mm] 0 gegen [mm] \infty. [/mm]

Kann also dann die Funktion glm. stetig sein ?

Viele Gruesse,

Mathias



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]