matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisGleichmäßige Konvergenz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Gleichmäßige Konvergenz
Gleichmäßige Konvergenz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichmäßige Konvergenz: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 12:54 Sa 04.11.2006
Autor: bastue

Hallo liebe Leute,
mir geht es um ein Verständnisproblem der gleichmäßigen Konvergenz, hab hier ein wenig geschaut , und auch auf ner anderen Website naja, bereits einen Antwortversuch von wem anders zu derselben Frage gesehen, aber der hat mich nicht weitergebracht...

Es geht um die Funktion, die sowohl im Königsberger beschrieben wird, als auch bei Wikipedia :)


[mm] f_n(x)=x^n [/mm]

und f(x) = 0 ( x <1 ) und  1 für x=1


Glm. Konvergenz = || [mm] f_n [/mm] - f  || _D --> 0 für n--> unendlich

bzw im kb steht noch " zu jedem epsilon größer null gibt es eine unverselle schranke N=n(epsilon) so, dass für alle n>N und alle x aus D gilt [mm] |f_n(x)-f(x)|

Mir ist nicht so ganz klar, wie man hier begründet, dass die nicht gleichmäßig ist , im kb steth ||fn-f|| ist in diesem Fall = 1 , wie kommt man denn dadrauf, dass ist doch die Supremumsnorm für jedes x aus dem definitionsbereich ?

In einem anderen Beitrag hier hab ich gefunden

"Wie du siehst, wurden hier die Quantoren für das x und das $ [mm] n_0 [/mm] $ einfach vertauscht. Somit bedeutet das anschaulich, daß das zu findende $ [mm] n_0 [/mm] $ nicht mehr von der Wahl des x abhängig ist.
"
Aber das sorgt irgendwie alles nur für Verwirrung bei mir !



        
Bezug
Gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:02 Sa 04.11.2006
Autor: DesterX

Hallo Basti,

du musst dir sicher erstmal ganz genau die Definition der punktweisen und gleichmäßigen Konvergenz anschauen-

[mm] f_n [/mm] -> f pkt'weise [mm] :\gdw \forall \varepsilon [/mm] > 0 [mm] \exists N=N(\varepsilon,x) \in \IN: \forall [/mm] n > N : [mm] \limes_{n\rightarrow\infty} |f_n-f| [/mm] < [mm] \varepsilon [/mm] für x [mm] \in [/mm] D

[mm] f_n [/mm] -> f glm'mäßig [mm] :\gdw \forall \varepsilon [/mm] > 0 [mm] \exists N=N(\varepsilon) \in \IN: \forall [/mm] n > N : [mm] \limes_{n\rightarrow\infty} |f_n-f| <\varepsilon [/mm] und das  [mm] \forall [/mm] x [mm] \in [/mm] D

Wo liegen also die Unterschiede? Nun, bei der punktweisen Konvergenz schaue ich mir ein bestimmtes x [mm] \in [/mm] D an, wähle, sofern möglich, danach mein Schranke N - dh ich wähle sie in Abhängigkeit von x -
dies wird dir bei dieser Fkt natürlich gelingen - nenne mir ein x, ich sage dir eine Schranke N und es passt - offenbar liegt pkt'weise Kovergenz vor! Allerdings fällt auf: Je näher du mir ein x nahe der 1 nennst, werde ich das N immer größer wählen müssen -
andererseits werde ich dir keine Schranke  N nennen können, die [mm] \forall [/mm] x [mm] \in [/mm] D das Kriterium erfüllt! Nehme ich nun eine Schranke N, wirst du stets ein x noch näher an der 1 finden, so dass diese Schranke zu klein ist! Ganz egal wie groß ich das N [mm] \in \IN [/mm] zuvor gewählt habe, bekommst du das hin!
Mit anderen Worten: Ich finde so eine Schranke nur, wenn ich schon das x kenne, ich wähle sie also in Abhängigkeit von x! Dies widerspricht der Defintion der glm. Konvergenz, hier sollte ich eine universelle Schranke N finden [mm] \forall [/mm] x [mm] \in [/mm] D - das jedoch gelingt hier aus oben genannten Gründen aber nicht! Also kovergiert die Funktion auf D nicht glm.!

Ist es dir evtl nun klarer? Sonst frage nochmal nach...

Viele Grüße
Dester

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]