matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraGleichmächtigkeit von Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Gleichmächtigkeit von Mengen
Gleichmächtigkeit von Mengen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichmächtigkeit von Mengen: Lösung?
Status: (Frage) beantwortet Status 
Datum: 13:32 So 07.11.2004
Autor: BiliAgili

Ich habe diese Frage in keinem anderen Forum gestellt.
Man sagt ja dass zwei Mengen M,N gleichmächtig sind, wenn es eine bijektive Abbildung f: M  [mm] \to [/mm] N gibt. Dennoch weiss ich nich genau wie ich es anhand dieser Aufgabe beweisen soll...:

[mm] \{x \in \IR; x \ge 0 \} [/mm] und  [mm] \{x \in \IR; x > 0 \} [/mm]

Würd mich über ein kurzen Lösungsvorschlag oder Lösungsansatz freuen.
Gruß Peter

        
Bezug
Gleichmächtigkeit von Mengen: Bijektion
Status: (Antwort) fertig Status 
Datum: 15:32 So 07.11.2004
Autor: Clemens

Hallo Peter!

Zerlege doch einfach die Menge [mm] R^{+} [/mm] in die Mengen N und [mm] R^{+} [/mm] \ N und die andere Menge [mm] R^{+}_{0} [/mm] in die Mengen [mm] N_{0} [/mm] und [mm] R^{+} [/mm] \ [mm] N_{0}. [/mm] Jetzt definiert sich die Bijektion ganz einfach:
f: [mm] R^{+} \to R^{+}_{0}, [/mm] x [mm] \mapsto [/mm] f(x)
f(x) = x, wenn x [mm] \in R^{+} [/mm] \ N
f(x) = x - 1, wenn x [mm] \in [/mm] N

Gruß Clemens

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]