matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieGleichheit zweier Darstellunge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Zahlentheorie" - Gleichheit zweier Darstellunge
Gleichheit zweier Darstellunge < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichheit zweier Darstellunge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:23 Di 24.05.2011
Autor: MatheStudi7

Aufgabe
Sei [mm] \alpha [/mm] eine multiplikative zahlentheo. Funktion und n [mm] \in \IZ. [/mm]
Zeigen Sie, dass [mm] \summe_{1\le d \le n, d|n}^{} \mu(d)*\alpha(d)=\produkt_{p\in\IP, p|n }^{} (1-\alpha(p)) [/mm]

[mm] \mu [/mm] ist hier die []Möbiusfunktion.


Guten Abend,

ich bin folgendermaßen an die Aufgabe heran gegangen:
Sei [mm] z=p_1^{n_1} [/mm] * [mm] p_2^{n_2} [/mm] * ... * [mm] p_k^{n_k} [/mm]
[mm] \Rightarrow [/mm] d={1, [mm] p_1, [/mm] ... [mm] ,p_1^{n_1}, [/mm] ... , [mm] p_k, [/mm] ... , [mm] p_k^{n_k} [/mm] }

[mm] \summe_{1\le d \le n, d|n}^{}\mu(d)*\alpha(d) [/mm] = [mm] \underbrace{\mu(1)*\alpha(1)}_{=1, da \mu(1)=\alpha(1)=1} [/mm] + [mm] \mu(p_1)*\alpha(p_1) [/mm] + ... + [mm] \mu(p_k)*\alpha(p_k) [/mm] + ... + [mm] \mu(p_1^{n_1})*\alpha(p_1^{n_1}) [/mm] + ... + [mm] \mu(p_k^{n_k})*\alpha(p_k^{n_k}) [/mm]

O.B.d.A. nehme ich nun an, dass für alle i [mm] \in [/mm] {1,...,k} [mm] n_i [/mm] > 0 ist, was zur Folge hat, dass [mm] \mu(p_i^{n_i}) [/mm] = 0 ist.
[mm] \Rightarrow \summe_{1\le d \le n, d|n}^{}\mu(d)*\alpha(d) [/mm] = 1 + [mm] \mu(p_1)*\alpha(p_1) [/mm] + ... + [mm] \mu(p_k)*\alpha(p_k) [/mm]

Jetzt gilt aber auch, dass [mm] \mu(p_i)=(-1) [/mm] ist:

[mm] \Rightarrow \summe_{1\le d \le n, d|n}^{}\mu(d)*\alpha(d) [/mm] = 1 - [mm] \alpha(p_1) [/mm] - ... - [mm] \alpha(p_k) [/mm]

Und hier komme ich nichtmehr weiter.
Hat jmd eine Idee?

        
Bezug
Gleichheit zweier Darstellunge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:15 Mi 25.05.2011
Autor: felixf

Moin!

> Sei [mm]\alpha[/mm] eine multiplikative zahlentheo. Funktion und n
> [mm]\in \IZ.[/mm]
>  Zeigen Sie, dass [mm]\summe_{1\le d \le n, d|n}^{} \mu(d)*\alpha(d)=\produkt_{p\in\IP}^{} (1-\alpha(p))[/mm]

Auf der linken Seite taucht $n$ auf, auf der rechten Seite allerdings nicht. Ich vermute mal, da fehlt noch etwas? Sollen z.B. auf der rechten Seite nur die Primzahlen $p$ auftauchen, die $n$ teilen?

LG Felix


Bezug
                
Bezug
Gleichheit zweier Darstellunge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:53 Mi 25.05.2011
Autor: MatheStudi7


> Auf der linken Seite taucht [mm]n[/mm] auf, auf der rechten Seite
> allerdings nicht. Ich vermute mal, da fehlt noch etwas?
> Sollen z.B. auf der rechten Seite nur die Primzahlen [mm]p[/mm]
> auftauchen, die [mm]n[/mm] teilen?
>  
> LG Felix
>  

Du hast recht. Da fehlte noch, dass p|n. Ich habe es verbessert.

Ich habe jetzt die Lösung/den Beweis dazu. Bei Bedarf, kann ich Ihn hier rein schreiben.

Ciao




Bezug
        
Bezug
Gleichheit zweier Darstellunge: Antwort
Status: (Antwort) fertig Status 
Datum: 00:12 Do 26.05.2011
Autor: felixf

Moin!

Auch wenn du die Loesung schon hast, hier noch Hinweise fuer andere, die die gleiche Aufgabe haben.

> Sei [mm]\alpha[/mm] eine multiplikative zahlentheo. Funktion und n
> [mm]\in \IZ.[/mm]
>  Zeigen Sie, dass [mm]\summe_{1\le d \le n, d|n}^{} \mu(d)*\alpha(d)=\produkt_{p\in\IP, p|n }^{} (1-\alpha(p))[/mm]
>  
> [mm]\mu[/mm] ist hier die
> []Möbiusfunktion.
>  
> Guten Abend,
>  
> ich bin folgendermaßen an die Aufgabe heran gegangen:
>  Sei [mm]z=p_1^{n_1}[/mm] * [mm]p_2^{n_2}[/mm] * ... * [mm]p_k^{n_k}[/mm]

Also $z = n$?

> [mm]\Rightarrow[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

d={1, [mm]p_1,[/mm] ... [mm],p_1^{n_1},[/mm] ... , [mm]p_k,[/mm] ... ,

> [mm]p_k^{n_k}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

Das sind nicht alle Teiler von $n$, sondern nur eine Teilmenge davon. Die Teiler sind von der Form $\prod_{i=1}^k p_i^{e_i}$ mit $0 \le e_i \le n_i$.

Allerdings: ist $e_i > 1$ fuer irgendein $i$, so ist $\mu$ vom Teiler gleich 0.

Also: im wesentlichen hat man Links stehen $\underset{(e_1, \dots, e_k) \in \{ 0, 1 \}^k}{\sum\sum} (-1)^{e_1 + \dots + e_k} \alpha(p_1)^{e_1} \cdots \alpha(p_k)^{e_k}$.

Und dass dies gerade $\prod_{i=1}^k (1 - \alpha(p_i))$ ausmultipliziert ist, kann man sich auch schnell ueberlegen. Das dann formal hinzuschreiben ist noch ein wenig mehr Arbeit, aber wenn man das obige verstanden hat geht das auch denke ich :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]