matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungGleichheit zeigen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Gleichheit zeigen
Gleichheit zeigen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichheit zeigen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:35 Do 03.07.2008
Autor: Rumba

Aufgabe
Es ist (X, ||.||) ein Banachraum, A [mm] \in [/mm] L(X,X)(stetige und lineare Funktionen von X nach X) und exp(.A): [mm] \IK \to [/mm] L(X,X) [mm] exp(zA):=\summe_{n=0}^{\infty}\bruch{(zA)^{n}}{n!}. [/mm] Zeige die Gleichheit:
[mm] (\bruch{d}{dz}exp(.A))(z) [/mm] = A exp(zA)

Hi!
Ich habe für die linke Seite folgendes gerechnet:
[mm] \bruch{d}{dz}exp(zA)= \bruch{d}{dz}\summe_{n=0}^{\infty}\bruch{(zA)^{n}}{n!} [/mm] = [mm] \bruch{d}{dz}(\summe_{n=1}^{\infty}\bruch{(zA)^{n}}{n!} [/mm] + [mm] \bruch{(zA)^{0}}{0!}) [/mm] =  [mm] \bruch{d}{dz}(\summe_{n=1}^{\infty}\bruch{(zA)^{n}}{n!} [/mm] + 1) = [mm] \summe_{n=1}^{\infty} \bruch{d}{dz}(\bruch{(zA)^{n}}{n!}+1) [/mm] = [mm] \summe_{n=1}^{\infty} \bruch{d}{dz}(\bruch{(zA)^{n}}{n!}+1) [/mm] = [mm] \summe_{n=1}^{\infty} \bruch{n (zA)^{n-1}A}^{n!} [/mm] =  [mm] A\summe_{n=1}^{\infty} \bruch{(zA)^{n-1}}^{(n-1)!} [/mm] =  A [ [mm] (\summe_{n=1}^{\infty} \bruch{(zA)^{n}}^{(n)!} [/mm] ) - [mm] \bruch{(zA)^{n}}{n!}] [/mm] = ...

die andere Seite:
... = A [mm] [(\summe_{n=1}^{\infty} \bruch{(zA)^{n}}^{(n)!} [/mm] + 1) ] = A [mm] [(\summe_{n=1}^{\infty} \bruch{(zA)^{n}}^{(n)!} [/mm] + [mm] \bruch{(zA)^{0}}{0!}) [/mm] ] = A [mm] \summe_{n=0}^{\infty} \bruch{(zA)^{n}}^{(n)!} [/mm] = A exp(zA)

Ich müsste doch jetzt zeigen, dass [mm] \bruch{(zA)^{n}}{n!} [/mm] = -1  Aber das kommt macht für mich keinen Sinn, wieso sollte das so sein? Oder wie mach ich das besser?

Danke für Tipps
LG

        
Bezug
Gleichheit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 Do 03.07.2008
Autor: vivo

hallo,

warum machst du dein eine neue Frage auf?

das selbe hast du doch gestern schon gefragt!

https://matheraum.de/read?t=425279

und da wurde es dir doch auch vollständig beantwortet.

Ich habe für die linke Seite folgendes gerechnet:
[mm]\bruch{d}{dz}exp(zA)= \bruch{d}{dz}\summe_{n=0}^{\infty}\bruch{(zA)^{n}}{n!}[/mm]
= [mm]\bruch{d}{dz}(\summe_{n=1}^{\infty}\bruch{(zA)^{n}}{n!}[/mm] +

> [mm]\bruch{(zA)^{0}}{0!})[/mm] =  
> [mm]\bruch{d}{dz}(\summe_{n=1}^{\infty}\bruch{(zA)^{n}}{n!}[/mm] +
> 1) = [mm]\summe_{n=1}^{\infty} \bruch{d}{dz}(\bruch{(zA)^{n}}{n!}+1)[/mm]
> = [mm]\summe_{n=1}^{\infty} \bruch{d}{dz}(\bruch{(zA)^{n}}{n!}+1)[/mm]
> = [mm]\summe_{n=1}^{\infty} \bruch{n (zA)^{n-1}A}^{n!}[/mm] =  
> [mm]A\summe_{n=1}^{\infty} \bruch{(zA)^{n-1}}^{(n-1)!}[/mm] =

keine Ahnung was Du jetzt in dem Schritt machst,

A
[

> [mm](\summe_{n=1}^{\infty} \bruch{(zA)^{n}}^{(n)!}[/mm] ) -
> [mm]\bruch{(zA)^{n}}{n!}][/mm] = ...


aber lass die Summe doch einfach bei 0 starten zähle dann zum n über dass du summierst 1 dazu da du ja sozusagen wenn du bei 0 startest in jedem Schritt 1 zu wenig "reinsteckst" ...

[mm]A\summe_{n=1}^{\infty} \bruch{(zA)^{n-1}}^{(n-1)!}[/mm] =
[mm]A\summe_{n=0}^{\infty} \bruch{(zA)^{n}}^{(n)!}[/mm] =
Aexp(zA)

> Ich müsste doch jetzt zeigen, dass [mm]\bruch{(zA)^{n}}{n!}[/mm] =
> -1  Aber das kommt macht für mich keinen Sinn, wieso sollte
> das so sein? Oder wie mach ich das besser?
>
> Danke für Tipps
>  LG

gruß

Bezug
                
Bezug
Gleichheit zeigen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:17 Do 03.07.2008
Autor: Rumba

Oh ja, hatte das erst nich verstanden, vielen Dank, nochmal!
LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]