matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGleichheit exponentialreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Gleichheit exponentialreihe
Gleichheit exponentialreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichheit exponentialreihe: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:45 Di 13.12.2011
Autor: yangwar1

Aufgabe
Zeigen Sie, dass für alle $ k [mm] \in \IZ [/mm] $ gilt:
$ exp(k) = [mm] e^k [/mm] $

Hallo,

der Beweis taugt vermutlich nicht recht viel, dennoch wollte ich euch bitten ihn zu korrigieren bzw. mir einen besseren Ansatz zu liefern.
Beweis: Die Exponentialfunktion ist definiert durch:
$ [mm] \summe_{n=0}^{\infty}\bruch{x^n}{n!} [/mm] $ Die eulersche Zahl ist definiert als $ exp(1) = [mm] \summe_{n=0}^{\infty}\bruch{1}{n!} [/mm] $. Zu zeigen ist also, dass gilt: $ [mm] \summe_{n=0}^{\infty}\bruch{x^n}{n!} [/mm] = [mm] \summe_{n=0}^{\infty}\bruch{1}{n!} [/mm] $. Da für jedes $ k [mm] \in \IR [/mm] $ die Reihe $ exp(k) § absolut konvergent ist, sind beide Reihen absolut konvergent. Da jede absolute konvergente Reihe konvergent ist, sind beide Reihen konvergent. Da die Reihen konvergent sind, gilt: $ lim [mm] \bruch{x^n}{n!} [/mm] = 0 = 0 = lim [mm] \bruch{1}{n!} [/mm] $.

---
Demnach sind also die Grenzwert der beiden Folgen gleich. Das bedeutet ja aber noch nicht, dass auch die Reihen gleich sind.

        
Bezug
Gleichheit exponentialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Di 13.12.2011
Autor: Helbig

Ich kann keinen Zusammenhang zwischen Aufgabe und Deinem Lösungsversuch entdecken.
Du mußt doch [mm] $\exp(k)=e^k$ [/mm] zeigen, also
[mm] $\sum_{i=0}^\infty \bruch {k^i} {i!}=\left(\sum_{i=0}^\infty \bruch 1 {i!} \right)^k$ [/mm] für [mm] $k\in\IZ$. [/mm]

Diese furchteinflößende Formel würde ich ganz schnell wieder vergessen und [mm] $\exp(k)=e^k$ [/mm] mit Induktion nach $k$ zeigen.

Reicht das schon mal?

Bezug
                
Bezug
Gleichheit exponentialreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:31 Mi 14.12.2011
Autor: yangwar1

Ich verstehe nicht ganz warum ich die Formel wieder vergessen soll, wenn ich sie doch zur Berechnung bei der Induktion brauche. Oder mache ich etwas falsch?

Mit der Induktion kann ich nur etwas beweisen, dass für höhere Werte nach einer überprüften Gleichheit passiert. In meinem Fall muss ich es aber für die ganzen Zahlen überprüfen. Wäre dann folgende Vorgehensweise richtig. Ich beweise es zuerst für alle ganzen Zahlen größer 0 und anschließend
für $ exp (-k) $ Das wären dann die negativen.

IA: für k=0 $ exp(0) = 1 = 1 = [mm] e^0 [/mm] $
IV: Es gelte "die Gleichheit" für alle k>0 und k aus den ganzen Zahlen.
IS: $ exp(k+1) = [mm] \summe_{i=0}^{\infty}\bruch {(k+1)^i}{i!}=...= [/mm]
[mm] \left(\sum_{i=0}^\infty \bruch 1 {i!} \right)^{k+1} [/mm]


Ich komme allerdings nicht auf den letzten Teil. Ist das überhaupt richtig, weil ich mir schwer vorstellen kann wie man darauf kommt.

Bezug
                        
Bezug
Gleichheit exponentialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Mi 14.12.2011
Autor: Helbig

Zeige zuerst [mm] $\exp [/mm] k = [mm] e^k$ [/mm] für alle [mm] $k\ge [/mm] 0$. Dein Induktionsanfang war schon richtig. Beim Induktionsschritt benutzt Du die Funktionalgleichung [mm] $\exp [/mm] (x+y) = [mm] \exp [/mm] x * [mm] \exp [/mm] y$ und die Potenzformel [mm] $e^{x+y}=e^x*e^y$. [/mm]

OK?

Gruß,
Wolfgang

Bezug
                                
Bezug
Gleichheit exponentialreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 Do 15.12.2011
Autor: yangwar1

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Gut, das ist verständlich.

Jetzt muss ich es also noch für alle ganzen Zahlen kleiner als 0 zeigen.

War mein Ansatz dann richtig? Ich komme dann nämlich zu etwas falschem.
IA: $ exp(-0) = exp (0) = 1 = 1 = e^{-0) = e^{0} = 1 $
IV: Die Gleichheit gilt für alle k>0 mit k aus den ganzen Zahlen.
IS: $ k->k+1: exp(-(k+1))=exp(-k-1) = exp(-k)*exp(-1) = exp(-k)*(-e) = (IV) e^{-k}*(-e) = -e^{-k+1} =  -e^{-(k-1)} $

Ich muss doch aber zeigen, dass folgt: $ e^{-(k+1)} $

Vermutlich muss ich wohl als IA setzen: $ -exp(k)=e^{-k} $ ?

Bezug
                                        
Bezug
Gleichheit exponentialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:33 Do 15.12.2011
Autor: fred97


> Gut, das ist verständlich.
>  
> Jetzt muss ich es also noch für alle ganzen Zahlen kleiner
> als 0 zeigen.
>
> War mein Ansatz dann richtig? Ich komme dann nämlich zu
> etwas falschem.
>  IA: [mm]exp(-0) = exp (0) = 1 = 1 = e^{-0) = e^{0} = 1[/mm]
>  IV:
> Die Gleichheit gilt für alle k>0 mit k aus den ganzen
> Zahlen.

Das ist doch Quatsch ! Wenn Du voraussetzt, dass Gleichheit für alle k>0 gilt, so mußt Du doch nichts mehr zeigen !!!


I.V.: sei k [mm] \in \IN [/mm] und [mm] exp(-k)=e^{-k} [/mm]


>  IS: [mm]k->k+1: exp(-(k+1))=exp(-k-1) = exp(-k)*exp(-1) = exp(-k)*(-e) = (IV) e^{-k}*(-e)}[/mm]

Unsinn. Es ist  nach IV::

                   $exp(-k)*exp(-1) [mm] =e^{-k}*e^{-1}$ [/mm]

Damit:  $exp(-(k+1))= [mm] e^{-k-1}= e^{-(k+1)}$ [/mm]

FRED




[mm] = -e^{-k+1} = -e^{-(k-1)}[/mm]

>  
> Ich muss doch aber zeigen, dass folgt: [mm]e^{-(k+1)}[/mm]
>  
> Vermutlich muss ich wohl als IA setzen: [mm]-exp(k)=e^{-k}[/mm] ?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]