matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenGleichgewichtspunkt bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Gleichgewichtspunkt bestimmen
Gleichgewichtspunkt bestimmen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichgewichtspunkt bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 Mi 05.12.2012
Autor: Thomas0086

Aufgabe
Betrachten Gleichungssystem
[mm] \vektor{x'(t) \\ y'(t)}= \vektor{y(t)-(x(t)^{2} +y(t)^{2}) x(t) \\ -x(t)-(x(t)^{2} +y(t)^{2}) y(t)} [/mm]

a)Linearisieren Sie bei dem einzigen Gleichgewichtspunkt. Ist das lineare System neutral stabil, asymptotisch stabil oder instabil?
b) Zeigen sie: Für jeden Lösung mit [mm] (x(0),y(0))\not=(0,0) [/mm] gilt
[mm] \bruch{\Delta}{\Delta t}(x(t)^{2} +y(t)^{2}) [/mm] < 0
Ist (0,0) für das Ausganssystem neutral stabil, asymptotisch stabil oder instabiler GGP?
c) Ändern sie zwei Vorzeichen im AS derart, dass (0,0) der einzige Gleichgewichtspunkt bleibt, der dann jedoch instabil ist.

Hallo,
zu a)
Auf den GlGePkt (0,0) bin ich
habe mir [mm] \delta [/mm] f = [mm] \pmat{ -3x{2}-y^{2} &1-2xy \\ -1-2xy & x^{2}-3y^{2} } [/mm] berechnet und dann

[mm] \delta [/mm] f [mm] \vektor{0 \\ 0}=\pmat{ 0 &1 \\ -1 & 0 } [/mm]
Eigenwerte sind hier
[mm] \lambda_{1}=i [/mm]
[mm] \lambda_{2}=-i [/mm]

[mm] Re\lambda_{i}=0. [/mm] Daraus kann kein eindeutige Aussage geschlossen werden.
Also habe ich mir die Umgebung betrachtet und die Trajektoren verlaufen für mich "kreisförmig", also asymptotisch stabil.

zu Tiel b) habe ich mir noch nicht viel Gedanken gemacht. Weiß aber auch nicht genau wie ich das zeigen soll.

Zu Teil c)
Müsste das nicht einfach
[mm] \vektor{x'(t) \\ y'(t)}= \vektor{y(t)-(x(t)^{2} +y(t)^{2}) x(t) \\ x(t)+(x(t)^{2} +y(t)^{2}) y(t)} [/mm]
sein?

Danke euch.
Thomas

        
Bezug
Gleichgewichtspunkt bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Mi 05.12.2012
Autor: MathePower

Hallo Thomas0086,

> Betrachten Gleichungssystem
>  [mm]\vektor{x'(t) \\ y'(t)}= \vektor{y(t)-(x(t)^{2} +y(t)^{2}) x(t) \\ -x(t)-(x(t)^{2} +y(t)^{2}) y(t)}[/mm]
>  
> a)Linearisieren Sie bei dem einzigen Gleichgewichtspunkt.
> Ist das lineare System neutral stabil, asymptotisch stabil
> oder instabil?
>  b) Zeigen sie: Für jeden Lösung mit
> [mm](x(0),y(0))\not=(0,0)[/mm] gilt
>  [mm]\bruch{\Delta}{\Delta t}(x(t)^{2} +y(t)^{2})[/mm] < 0
>  Ist (0,0) für das Ausganssystem neutral stabil,
> asymptotisch stabil oder instabiler GGP?
>  c) Ändern sie zwei Vorzeichen im AS derart, dass (0,0)
> der einzige Gleichgewichtspunkt bleibt, der dann jedoch
> instabil ist.
>  Hallo,
>  zu a)
>  Auf den GlGePkt (0,0) bin ich
> habe mir [mm]\delta[/mm] f = [mm]\pmat{ -3x{2}-y^{2} &1-2xy \\ -1-2xy & x^{2}-3y^{2} }[/mm]
> berechnet und dann
>  
> [mm]\delta[/mm] f [mm]\vektor{0 \\ 0}=\pmat{ 0 &1 \\ -1 & 0 }[/mm]
>  
> Eigenwerte sind hier
>  [mm]\lambda_{1}=i[/mm]
>  [mm]\lambda_{2}=-i[/mm]
>  
> [mm]Re\lambda_{i}=0.[/mm] Daraus kann kein eindeutige Aussage
> geschlossen werden.
>  Also habe ich mir die Umgebung betrachtet und die
> Trajektoren verlaufen für mich "kreisförmig", also
> asymptotisch stabil.
>  


Für ein lineares System bedeutet doch das zunächst Stabilität.
Ob es sich um asymptotische Stabilität handelt, bleibt dahingestellt.


> zu Tiel b) habe ich mir noch nicht viel Gedanken gemacht.
> Weiß aber auch nicht genau wie ich das zeigen soll.
>  
> Zu Teil c)
>  Müsste das nicht einfach
> [mm]\vektor{x'(t) \\ y'(t)}= \vektor{y(t)-(x(t)^{2} +y(t)^{2}) x(t) \\ x(t)+(x(t)^{2} +y(t)^{2}) y(t)}[/mm]
>  
> sein?
>  


Das muss so sein.


> Danke euch.
>  Thomas


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]