matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathematik-WettbewerbeGleiche Winkel nachweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathematik-Wettbewerbe" - Gleiche Winkel nachweisen
Gleiche Winkel nachweisen < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleiche Winkel nachweisen: Tipp gesucht
Status: (Frage) beantwortet Status 
Datum: 23:35 Mi 30.08.2017
Autor: Brinki

 
Aufgabe
Von einem Punkt P außerhalb eines Kreises beschreiben die zwei Tangenten einen Kreisbogen b und eine zugehörige Kreissehne AB. Der Punkt R sei die Mitte von AB. Eine Sekante durch P liefert einen Punkt C auf dem Bogen b und einen Punkt Q auf der Sehne AB. 
Zeige, dass die Winkel ACQ und RCB gleich groß sind.




Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
        
Bezug
Gleiche Winkel nachweisen: Ansätze
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:40 Mi 30.08.2017
Autor: Brinki

Aufgabe
<br>
 


Ich habe zur obigen Aufgabe einige Lösungsversuche angestellt (z. B. gleiche Umfangswinkel, Sehnen-Tangentenwinkel, Thaleskreise).
Leider finde ich keine Möglichkeit, die beiden Winkel ineinander zu überführen oder die Gleichheit durch Symmetrie nachzuweisen. Auch Versuche mit Winkelsummen scheiterten. 
Vielleicht findet jemand im Forum einen Ansatz. 
Vielen Dank dafür.

Bezug
        
Bezug
Gleiche Winkel nachweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:15 Do 31.08.2017
Autor: Diophant

Hallo Brinki,

da muss irgendetwas in deiner Beschreibung der Aufgabenstellung fehlen.

Der Winkel [mm] \beta [/mm] ist bereits durch die Wahl eines Punktes P festgelegt. Der Winkel [mm] \alpha [/mm] hängt aber noch von der Wahl eines Punktes C bzw. Q für die Sekante ab. Also muss über den Verlauf dieser Sekante noch mindestens eine weitere Angabe existieren.


Sorry, das war ein Irrtum meinerseits (natürlich hängt auch der Winkel [mm] \beta [/mm] von der Wahl der Sekante ab).


Gruß, Diophant

Bezug
        
Bezug
Gleiche Winkel nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 Do 31.08.2017
Autor: leduart

Hallo
siehe das Bild im Anhang.
ich Spiegel die Gerade PQ erhalte die 2  gleich langen roten Sehnen r und s, die Winkel darüber sind gleich.
zu zeigen bleibt  dass sich die 2 Diagonalen  CJ und IH auf AB schneiden, also in R
da seh ich nur einen projektiven Beweis.
[Dateianhang nicht öffentlich]
Gruß leduart

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Gleiche Winkel nachweisen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:35 So 03.09.2017
Autor: Brinki

Die Spiegelung der Sekante PC an der Achse PC führt zur Sehne BJ, die aus Symmetriegründen gleich lang ist wie die Sehne AH.
Bleibt zu zeigen, dass die Gerade CR die den Kreis im Punkt J=H' schneidet. Dieser Nachweis gelingt z. B. durch Winkelsummenberechnungen an den Dreiecken RBC und RJB. 
Mit Umfangswinkeln und Tangenten-Sekantenwinkeln kann man zeigen, dass der Winkel bei J im Dreieck RJB gleich groß sein muss wie der Umfangswinkel [mm] \beta[/mm] (über der Sehne JB). Damit folgt aus der obigen Sehnengleichheit: [mm] \beta =\alpha[/mm].
Danke, leduart, für den entscheidenden Tipp.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]