matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteGleiche Eigenvektoren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Eigenwerte" - Gleiche Eigenvektoren
Gleiche Eigenvektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleiche Eigenvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:58 Sa 16.06.2007
Autor: Tobi07

Aufgabe
Zwei Matritzen P und Q verhalten sich wie folgt zueinander:

[mm] P=e^Q [/mm]                                       (1)

dabei ist [mm] e^Q [/mm] wie folgt definiert:

[mm] e^Q [/mm] = [mm] \summe_{i>0} \bruch{Q^i}{i!} [/mm]                   (2)

Hallo,

aus Gleichung (2) soll Ersichtlich sein, dass P und Q die gleichen Eigenvektoren haben, und  wenn a ein Eigenwert von Q ist, dann ist   [mm] e^a [/mm] ein Eigenwert von P.

Leider verstehe ich diesen Zusammenhang nicht, da ich von Eigenwert und Eigenvektor nur die Definition und einige Rechenbeispiele kenne.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Gleiche Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Sa 16.06.2007
Autor: leduart

Hallo
Eigenvektor x zu P mit Eigenwert a heisst Px=ax
daraus [mm] P^2x=P(Px)=Pax=aPx=a*ax=a^2 [/mm]
damit entsprechend [mm] P^nx=a^n [/mm] x
jetzt die Reihe!
Gruss leduart

Bezug
                
Bezug
Gleiche Eigenvektoren: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:23 So 17.06.2007
Autor: Tobi07

Hallo,

und vielen Dank für die schnelle Antwort!
Ich hätte da aber noch eine Frage.

Du hast oben gezeigt, dass sich der Eigenvektor durch Exponieren nicht ändert.

Da man die Summe [mm] $\summe_{i>1}\bruch{Q^i}{i!}$ [/mm] auch als [mm] $\summe_{i>1}\bruch{1}{i!}Q^i$ [/mm]  aufschreiben kann, muss ich nur noch

[mm] $\summe_{i>1}\bruch{1}{i!}$ [/mm] auf

[mm] $Q^nx=a^n$ [/mm] anwenden. Also:

[mm] $\summe_{i>1}\bruch{1}{i!}Q^i*x=\summe_{i>1}\bruch{1}{i!}a^i*x$ [/mm]
[mm] $\Rightarrow [/mm] x *  [mm] \summe_{i>1}\bruch{1}{i!}Q^i [/mm] = x * [mm] \summe{i>0}\bruch{a^i}{i!}=x* e^a$ [/mm]

also ist [mm] $e^a$ [/mm] der Eigenwert von P.

Ist das so richtig?

Gruß

  Tobias

Bezug
                        
Bezug
Gleiche Eigenvektoren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 19.06.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]