matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieGlatte Mannigfaltigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Topologie und Geometrie" - Glatte Mannigfaltigkeit
Glatte Mannigfaltigkeit < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Glatte Mannigfaltigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Sa 20.05.2006
Autor: Langfingerli

Aufgabe
Betrachten Sie die Teilmenge
X ={ [mm] (x_{1}, x_{2}, x_{3}, x_{4}):x_{1}^4+x_{2}^2*x_{3}^2+x_{4}^4 [/mm] −1 = 0} des [mm] \IR^4 [/mm]
versehen mit der Teilraumtopologie. Ist X eine glatte Mannigfaltigkeit? Beweisen
Sie Ihre Antwort. Wenn X eine Mannigfaltigkeit ist, welche Dimension hat sie?

Hallo,
kann mir jemand mal skizzieren, wie ich vorgehen soll?
Bin mir irgendwie noch extrem unschlüssig...
Gruß,
Lf

        
Bezug
Glatte Mannigfaltigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Sa 20.05.2006
Autor: SEcki


>  kann mir jemand mal skizzieren, wie ich vorgehen soll?
>  Bin mir irgendwie noch extrem unschlüssig...

Satz vom regulären wert.

SEcki

Bezug
                
Bezug
Glatte Mannigfaltigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 So 21.05.2006
Autor: Langfingerli

Oke, ich habe jetzt versucht, den Satz für reguläre Werte zu benutzen.
Dieser besagt ja, das [mm] f^{-1}(y) [/mm] eine glatte UMF ist, wenn y ein reg.
Wert ist, f glatt.

Nun ist meine Behauptung, daß [mm] f^{-1}(1) [/mm] ein regulärer Wert
ist, also [mm] f_{*}(x) [/mm] surjektiv ist.
Nun betrachte ich die partiellen Ableitungen nach allen Raumrichtungen
[mm] x_{1} [/mm] , [mm] x_{2} [/mm] , [mm] x_{3} [/mm] ,  [mm] x_{4}. [/mm]
Jetzt bin ich mir allerdings noch nicht ganz sicher, wie ich weitermache.
Ich weiß, daß [mm] \exists [/mm] i mit [mm] x_{i} \not= [/mm] 0.
Betrachte ich nun das totale Differential, also die Summer der part. Ableitungen? Ich will ja zeigen, daß das Diff. ungleich 0 ist und surjektiv.
Wenn ich das gezeigt habe, dann folgt ja aus dem obigen Satz, daß meine Menge X eine glatte UMF ist.
Gruß und Dank,
Lf

Bezug
                        
Bezug
Glatte Mannigfaltigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:36 Mo 22.05.2006
Autor: MatthiasKr

Hallo,

das differential deiner abbildung in einem bestimmten punkt ist ja eine lineare abbildung vom [mm] $\IR^4$ [/mm] in den [mm] $\IR$. [/mm] Damit so eine abbildung surjektiv ist, muss sie lediglich ungleich der 0-abbildung sein. du musst also prüfen, dass der gradient der abbildung f in allen punkten des urbilds [mm] $f^{-1}(y)$ [/mm] nicht verschwindet.
Dann bist du fertig!

VG
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]