matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikGitterbasis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Diskrete Mathematik" - Gitterbasis
Gitterbasis < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gitterbasis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 Do 25.06.2015
Autor: Salamence

Hallo,

gegeben sind Vektoren des [mm] \IR^{n}, [/mm] die eine Basis beinhalten und ich moechte eine Basis des von Ihnen erzeugten Gitters angeben. Wie stelle ich das genau an? Im genauen habe ich ein Gitter [mm] \Lambda [/mm] mit einer Basis [mm] b_{1}, [/mm] ..., [mm] b_{n} [/mm] und schmeisse einen weiteren Vektor $ u $ hinzu.

Zum Beispiel: [mm] \Lambda [/mm] = [mm] \{ x \in \IZ^{n} | \sum_{i} x_{i} \equiv 0 \ mod \ 2 \} [/mm] mit Basis [mm] b_{i} [/mm] = [mm] e_{1} [/mm] + [mm] e_{i} [/mm]
und $ u = [mm] \frac{1}{2} \sum_{i} e_{i} [/mm] $
Wie bestimmen ich dann eine Basis des Gitters [mm] \Lambda' [/mm] = [mm] \Lambda [/mm] + u [mm] \IZ [/mm] ?

Ich habe schon probiert, alle Basisvektoren um $ u $ zu verschieben, nur einen oder $ [mm] v_{1} [/mm] $ durch $ u $ zu ersetzen, aber nichts passt. Wie stelle ich das also i. A. an?

        
Bezug
Gitterbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 11:19 Fr 26.06.2015
Autor: hippias

Es gibt sicherlich schoene Algorithmen um Gitterbasen zu berechnen - da wuerde ich in die entsprechende Literatur schauen. Viellicht hilft es schon sich nocheinmal die Beweise fuer die Existenz einer Gitterbasis anzusehen: die sind manchmal einigermassen konstruktiv.

Deine Idee sollte bei diesem Beispiel aber auch ohne weitere Hilfsmittel erfolgreich sein. Es koennte eine Fallunterscheidung nach der Paritaet von $n$ hilfreich sein. Wenn $n$ ungerade ist, erhalte ich z.B. [mm] $e_{1},\ldots, e_{n-1}, [/mm] u$ als moegliche Basis von [mm] $\Gamma'$. [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]