matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeGewinnmaximum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Extremwertprobleme" - Gewinnmaximum
Gewinnmaximum < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gewinnmaximum: Idee
Status: (Frage) beantwortet Status 
Datum: 14:11 So 28.06.2015
Autor: LamLayYong

Aufgabe
Die Gewinnfunktion einer Firma lautet: [mm] G_{(x, y)} = -5x^2 - 4y^2 - 4xy + 240x + 160y - 2.500 [/mm]

1) Bestimme das Gewinnmaximum von G(x, y) ?

2) Wie hoch ist der maximale Gewinn ?

zu 1) ich habe die Partielle Ableitungen gebildet
[mm]G_{x(x,y)} = -10x - 4y + 240 [/mm]

[mm]G_{y(x,y)} = -8y-4x+160 [/mm]

anschließend habe ich

(I) [mm] G_{x}[/mm]   nach x und (II) [mm] G_{y}[/mm]   nach y umgestellt

(II) in die (I) Gleichung eingesetzt und versucht x und y rauszubekommen.
es hat nicht geklappt.

Es sollte (x= 20, y =10) rauskommen.
Ist mein Ansatz falsch ?




        
Bezug
Gewinnmaximum: Antwort
Status: (Antwort) fertig Status 
Datum: 15:01 So 28.06.2015
Autor: notinX

Hallo,

> Die Gewinnfunktion einer Firma lautet: [mm]G_{(x, y)} = -5x^2 - 4y^2 - 4xy + 240x + 160y - 2.500[/mm]
>  
> 1) Bestimme das Gewinnmaximum von G(x, y) ?
>  
> 2) Wie hoch ist der maximale Gewinn ?
>  zu 1) ich habe die Partielle Ableitungen gebildet
>  [mm]G_{x(x,y)} = -10x - 4y + 240[/mm]
>  
> [mm]G_{y(x,y)} = -8y-4x+160[/mm]

[ok]

>  
> anschließend habe ich
>
> (I) [mm]G_{x}[/mm]   nach x und (II) [mm]G_{y}[/mm]   nach y umgestellt

Wie geht das denn? [mm] $G_x$ [/mm] kennzeichnet doch die partielle Ableitung nach x oder? Ich weiß wie man Gleichungen umstellt, aber wie das mit partiellen Ableitungen funktioniert musst Du mir erstmal erklären.

>
> (II) in die (I) Gleichung eingesetzt und versucht x und y
> rauszubekommen.

Zeig mal, welche Gleichung Du explizit mit (I) und (II) meinst, dann können wir weiter sehen.

> es hat nicht geklappt.

Das ist schade für Dich, aber mit dieser Info können wir Dir leider nicht helfen. Wenn Du zum Arzt gehst, musst Du auch etwas präziser sein, als zu sagen 'ich bin krank'...

>  
> Es sollte (x= 20, y =10) rauskommen.

Tut es auch.

>  Ist mein Ansatz falsch ?
>  

Keine Ahnung, die Informationen zu Deiner Vorgehensweise sind zu spärlich, um das zu beurteilen.

Wie bestimmt man denn ganz allgemein Extremwerte von Funktionen?

Gruß,

notinX

Bezug
        
Bezug
Gewinnmaximum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:27 So 28.06.2015
Autor: LamLayYong

Normalweise löst man extremwertaufgabe so:

man bildet die erste Ableitung der Funktion. Setzt sie null.
Stellt nach x um je nachdem welchen Grades die Funktion ist benutzt man die pq Formel für Funktionen 2. Grades zum lösen der Gleichung.

Setzt die Nullstellen dann in die zweite Ableitung um zu schauen ob es ein Minimum oder Maximum ist.

Bei Partiellen Ableitungen weiß ich nicht wie ich vorangehen sollte. Deshalb hab ich versucht das selbe zu machen bin aber hängen geblieben.

Meine Überlegung:


$ [mm] G_{x(x,y)} [/mm] = -10x - 4y + 240 $
  

nach x umgestellt


x= 24 + [mm] \frac {4}{10}y [/mm]

Da y auch unbekannt ist, dacht ich mir ich benutz die partielle Ableitung nach y

$ [mm] G_{y(x,y)} [/mm] = -8y-4x+160 $

und stelle diese nach y um

y= $- [mm] \frac [/mm] {1}{2}x+20$ setze diese in bei x= 24 + [mm] \frac {4}{10}y [/mm]


dann erhalte ich aber$frac{80}{3}$

was nicht stimmen kann.


Dann bräuchte ich ja noch die 2. partiellen Ableitungen und die Hessematrix um zu sehen ob es ein Maximum oder Minimum ist.

Oder geht es Total in die falsche Richtung die überlegung ?






Bezug
                
Bezug
Gewinnmaximum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 So 28.06.2015
Autor: notinX


> Normalweise löst man extremwertaufgabe so:
>  solv
> man bildet die erste Ableitung der Funktion. Setzt sie
> null.
>  Stellt nach x um je nachdem welchen Grades die Funktion
> ist benutzt man die pq Formel für Funktionen 2. Grades zum
> lösen der Gleichung.
>  
> Setzt die Nullstellen dann in die zweite Ableitung um zu
> schauen ob es ein Minimum oder Maximum ist.
>  
> Bei Partiellen Ableitungen weiß ich nicht wie ich
> vorangehen sollte. Deshalb hab ich versucht das selbe zu
> machen bin aber hängen geblieben.

Wieso weißt Du das nicht? Wenn Dir solche Aufgaben gestellt werden, sollte der Stoff dazu vorher behandelt worden sein.
Im Prinzip verhält es sich bei Funktionen mehrerer Veränderlicher analog zu Funktionen nur einer Variable.
Das Notwendige Kriterium für einen Extremwert ist das Verschwinden des Gradienten. Auskunft darüber, ob und wenn ja um welche Art von Extremwert es sich handelt gibt die Hesse-Matrix.

>  
> Meine Überlegung:
>  
>
> [mm]G_{x(x,y)} = -10x - 4y + 240[/mm]
>    
>
> nach x umgestellt

ergibt: [mm] $x=\frac{240-4y-G_x(x,y)}{10}$ [/mm]
Das ist aber nicht gesucht, sondern die Nullstelle, also: [mm] $G_x(x,y)=0\Rightarrow x=24-\frac{2}{5}y$ [/mm]

>  
>
> x= 24 + [mm]\frac {4}{10}y[/mm]

[notok]

>  
> Da y auch unbekannt ist, dacht ich mir ich benutz die
> partielle Ableitung nach y
>  
> [mm]G_{y(x,y)} = -8y-4x+160[/mm]
>  
> und stelle diese nach y um

Nein, Du stellst [mm] $G_y(x,y)=0$ [/mm] nach y um!

>  
> y= [mm]- \frac {1}{2}x+20[/mm] setze diese in bei x= 24 + [mm]\frac {4}{10}y[/mm]

[ok]

>  
>
> dann erhalte ich aber[mm]frac{80}{3}[/mm]

Probiers nochmal mit den richtig umgestellten Gleichungen.

>  
> was nicht stimmen kann.
>  
>
> Dann bräuchte ich ja noch die 2. partiellen Ableitungen
> und die Hessematrix um zu sehen ob es ein Maximum oder
> Minimum ist.

Ja.

>  
> Oder geht es Total in die falsche Richtung die überlegung
> ?
>  
>

Nein.

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]