matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisGewinn-&Kostenfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Gewinn-&Kostenfunktion
Gewinn-&Kostenfunktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gewinn-&Kostenfunktion: Frage
Status: (Frage) beantwortet Status 
Datum: 18:36 Mo 05.09.2005
Autor: ramithep12

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo an alle.

Folgende Aufgabe:

K(x) = 2,5x² + 5x + 115
x(p) = -0,4p + 50

Meine Lösung:

· Umstellen nach p

x(p) = -0,4p +50   /+0,4p / -x
        0,4p = - x + 50   /: (0,4)
             p = -2,5x + 125


· Einsetzen in Erlösfunktion allgemein:

E(x) = p * x
E(x) = (-2,5x + 125) * x

E (x) = -2,5x² + 125x


· Gewinne = Erlöse – Kosten

G(x) = E(x) – K(x)
G(x) = (-2,5x² + 125x) – (2,5x² + 5x + 115)
G(x) = -2,5x² - 2,5x² + 125x – 5x - 115
G(x) = -5x² + 120x – 115 / :(-5)
G(x) =   x²    -  24x  + 23


· Gewinnschwelle

· 1. Ableitung von Erlös- und Kostenfunktion bilden???

   E’(x) = K’(x)

   -5x + 125 = 5x + 5 /-5x / -125
          - 10x = - 120 / : (-10)
   x = 12

Ab einer Stückmenge von 12 Einheiten erreicht die Unternehmung ihren maximalen Gewinn.

Nur, diese Lösung scheint nicht hinzuhauen. Über jede Form von Hilfe bin ich dankbar.

PS: Am wichtigsten ist mir die Gewinnschwelle!




        
Bezug
Gewinn-&Kostenfunktion: Aufgabenstellung? & Tipp
Status: (Antwort) fertig Status 
Datum: 21:19 Mo 05.09.2005
Autor: Bastiane

Hallo!
Wär nicht schlecht, wenn du auch noch sagst, was überhaupt die Aufgabenstellung ist. Irgendwie finde ich die nicht. ;-)

> Hallo an alle.
>  
> Folgende Aufgabe:
>  
> K(x) = 2,5x² + 5x + 115
>  x(p) = -0,4p + 50
>  
> Meine Lösung:
>  
> · Umstellen nach p
>  
> x(p) = -0,4p +50   /+0,4p / -x
>          0,4p = - x + 50 /: (0,4)
>               p = -2,5x + 125
>  
>
> · Einsetzen in Erlösfunktion allgemein:
>  
> E(x) = p * x
>  E(x) = (-2,5x + 125) * x
>  
> E (x) = -2,5x² + 125x

[daumenhoch] soweit ich das sehen kann, ist bis hierhin kein Rechenfehler drin :-)

> · Gewinne = Erlöse – Kosten
>  
> G(x) = E(x) – K(x)
>  G(x) = (-2,5x² + 125x) – (2,5x² + 5x + 115)
>  G(x) = -2,5x² - 2,5x² + 125x – 5x - 115
>  G(x) = -5x² + 120x – 115 / :(-5)

Wieso teilst du denn durch (-5)? Dann muss doch links stehen [mm] \bruch{G(x)}{-5}, [/mm] ansonsten ist es ja nicht mehr die gleiche Gleichung!?

>  G(x) =   x²    -  24x  + 23
>  
>
> · Gewinnschwelle
>  
> · 1. Ableitung von Erlös- und Kostenfunktion bilden???
>  
> E’(x) = K’(x)
>  
> -5x + 125 = 5x + 5 /-5x / -125
>            - 10x = - 120 / : (-10)
>     x = 12
>  
> Ab einer Stückmenge von 12 Einheiten erreicht die
> Unternehmung ihren maximalen Gewinn.
>
> Nur, diese Lösung scheint nicht hinzuhauen. Über jede Form
> von Hilfe bin ich dankbar.

Wie hast du herausgefunden, dass es nicht hinhaut? Naja, vielleicht bekommst du ja mit [mm] -5x^2+100x-115 [/mm] ein Ergebnis, das hinhaut.

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
Gewinn-&Kostenfunktion: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:16 Di 06.09.2005
Autor: ramithep12

Hallo Bastiane,

danke für deine Antwort.

1. Gesucht waren Preisfunktion, Gewinnfunktion und Gewinnschwelle bei einem Monopol.

2. Ich wollte durch -5 teilen (kürzen?), um die Gleichung nach der p-q-Formel-Lösung für quadratische Gleichungen zu lösen.

Vielleicht kann deine Antwort damit konkreter ausfallen.

Vielen Dank im voraus!

Bezug
        
Bezug
Gewinn-&Kostenfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 Di 06.09.2005
Autor: Sigrid

Hallo,

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hallo an alle.
>  
> Folgende Aufgabe:
>  
> K(x) = 2,5x² + 5x + 115
>  x(p) = -0,4p + 50
>  
> Meine Lösung:
>  
> · Umstellen nach p
>  
> x(p) = -0,4p +50   /+0,4p / -x
>          0,4p = - x + 50 /: (0,4)
>               p = -2,5x + 125
>  
>
> · Einsetzen in Erlösfunktion allgemein:
>  
> E(x) = p * x
>  E(x) = (-2,5x + 125) * x
>  
> E (x) = -2,5x² + 125x
>  
>
> · Gewinne = Erlöse – Kosten
>  
> G(x) = E(x) – K(x)
>  G(x) = (-2,5x² + 125x) – (2,5x² + 5x + 115)
>  G(x) = -2,5x² - 2,5x² + 125x – 5x - 115
>  G(x) = -5x² + 120x – 115 / :(-5)
>  G(x) =   x²    -  24x  + 23
>  
>
> · Gewinnschwelle
>  
> · 1. Ableitung von Erlös- und Kostenfunktion bilden???
>  
> E’(x) = K’(x)
>  
> -5x + 125 = 5x + 5 /-5x / -125
>            - 10x = - 120 / : (-10)
>     x = 12
>  
> Ab einer Stückmenge von 12 Einheiten erreicht die
> Unternehmung ihren maximalen Gewinn.

Du hast korrekt den maximalen Gewinn berechnet, aber du solltest doch die Gewinnschwelle berechnen. Das ist die Produktionsmenge, ab der die Firma Gewinnn macht. Diesen Wert erhäkst du, indem du Erlösfunktion und Kostenfunktion gleichsetzt. Das gleiche erhälst du natürlich auch, wenn du die Gewinnfunktion gleich 0 setzt. Der zweite Wert ist dann die Gewinngrenze.

Gruß
Sigrid

>
> Nur, diese Lösung scheint nicht hinzuhauen. Über jede Form
> von Hilfe bin ich dankbar.
>
> PS: Am wichtigsten ist mir die Gewinnschwelle!
>  
>
>  

Bezug
                
Bezug
Gewinn-&Kostenfunktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:09 Di 06.09.2005
Autor: ramithep12

Hallo Sigrid,

danke für die Antwort, aber ich habe doch K(x) = E(x) gesetzt (jedenfalls die 1.Ableitung!). Ist das nicht richtig?

Und wenn ich die Gewinnfunktion Null setze, bekomme ich nach der p-q-Formel einmal 1 und einmal 24 heraus. Welcher Wert stellt nun die Gewinnschwelle dar?

Es wäre sehr hilfreich, wenn mir einfach jemand die Gewinnschwelle in Rechenschritten aufzeigt. Und noch einmal bestätigt, dass ich G(x) die -5 wegkürzen kann.

Danke im voraus.


Bezug
                        
Bezug
Gewinn-&Kostenfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 00:12 Mi 07.09.2005
Autor: Mary194

Wenn du die Gewinnfunktion gleich Null setzt kommt bei mir x=1 und x=23 raus. x=1 ist die Gewinnschwelle und x=23 nennt man Gewinngrenze.

Und du kannst bei G die -5 wegkürzen, denn wenn du die Funktion [mm] -5x^2+120x-115=0 [/mm]  hast, dividierst du ja alles durch 5 (also auch die Null).

Kennst du dich aus?

Grüße, Mary



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]