matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenGew. aut. DGL - Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Gew. aut. DGL - Konvergenz
Gew. aut. DGL - Konvergenz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gew. aut. DGL - Konvergenz: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 02:53 Di 21.04.2015
Autor: DudiPupan

Aufgabe
First-oder autonomus initial value problem:
[mm] $$\dot x=f(x),\quad x(0)=x_0,$$ [/mm]
where $f$ is such that the solutions are unique (e.g. [mm] $f\in C^1$). [/mm]
(i) If [mm] $f(x_0)=0$ [/mm] then [mm] $x(t)=x_0$ [/mm] for all $t$.
(ii) If [mm] $f(x_0)\neq [/mm] 0$, then $x(t)$ converges to the first zero left [mm] ($f(x_0)<0$) [/mm] respectively right [mm] ($f(x_0)>0$) [/mm] of [mm] $x_0$. [/mm] If there ist no such zero the solution converges to [mm] $-\infty$, [/mm] respectively [mm] $\infty$. [/mm]


Guten Abend zusammen,

ich muss für eine Präsentation die oben stehenden Aussagen beweisen und bin mir bei (ii) etwas unsicher.

(i) Ist klar. Hier ist ja die Aussage einfach, dass die Ruhelage einer autonomen gew. DGL 1. Ord. schon durch die Nullstellen von $f$ gegeben ist. Dies gilt, da für [mm] $f(x_0)=0$ [/mm] offensichtlich [mm] $x\equiv x_0$ [/mm] (eindeutige) Lösung des AWPs ist.

Bei (ii) habe ich mir folgendes gedacht:
Sei also [mm] $x_0$ [/mm] mit [mm] $f(x_0)<0$ [/mm] und existiere eine Nullstelle [mm] $x^\ast$ [/mm] von $f$ links neben [mm] $x_0$, [/mm] dann gilt natürlich $dx/dt=f(x)<0$ für [mm] $x\in (x^\ast,x_0)$, [/mm] d.h. $x$ fällt streng monoton in diesem Intervall. Damit finden wir ein [mm] $t^\ast$ [/mm] so groß, dass für [mm] $X(t):=x(t)-x^\ast$ [/mm] gilt: [mm] $|n(t)|\ll [/mm] 1$ für [mm] $t>t^\ast$ [/mm] und damit können wir linearisieren (+Taylor) und erhalten
[mm] $$dX(t)/dt\approx X(t)f'(x^\ast)\quad $\Rightarrow X(t)\propto \exp(f'(x^\ast)t)$$ [/mm]
Nun ist es klar, falls $f$ bei [mm] $x^\ast$ [/mm] einen Vorzeichenwechsel hat, damit hier also von - nach + und damit [mm] $f'(x^\ast)<0$, [/mm] womit [mm] $X(t)\to [/mm] 0$ und damit [mm] $x(t)\to x^\ast$ [/mm] für [mm] $t\to \infty$ [/mm] gilt.

Wenn aber nun aber $f$ die $x$-Achse an der Stelle [mm] $x^\ast$ [/mm] nur berührt? Dann funktioniert das oben ja nicht?

Würde mich sehr über Hilfe freuen

Liebe Grüße
DudiPupan

        
Bezug
Gew. aut. DGL - Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 07:04 Di 21.04.2015
Autor: fred97


> First-oder autonomus initial value problem:
>  [mm]\dot x=f(x),\quad x(0)=x_0,[/mm]
>  where [mm]f[/mm] is such that the
> solutions are unique (e.g. [mm]f\in C^1[/mm]).
>  (i) If [mm]f(x_0)=0[/mm] then
> [mm]x(t)=x_0[/mm] for all [mm]t[/mm].
>  (ii) If [mm]f(x_0)\neq 0[/mm], then [mm]x(t)[/mm] converges to the first
> zero left ([mm]f(x_0)<0[/mm]) respectively right ([mm]f(x_0)>0[/mm]) of [mm]x_0[/mm].
> If there ist no such zero the solution converges to
> [mm]-\infty[/mm], respectively [mm]\infty[/mm].
>  
> Guten Abend zusammen,
>  
> ich muss für eine Präsentation die oben stehenden
> Aussagen beweisen und bin mir bei (ii) etwas unsicher.
>  
> (i) Ist klar. Hier ist ja die Aussage einfach, dass die
> Ruhelage einer autonomen gew. DGL 1. Ord. schon durch die
> Nullstellen von [mm]f[/mm] gegeben ist. Dies gilt, da für [mm]f(x_0)=0[/mm]
> offensichtlich [mm]x\equiv x_0[/mm] (eindeutige) Lösung des AWPs
> ist.
>  
> Bei (ii) habe ich mir folgendes gedacht:
>  Sei also [mm]x_0[/mm] mit [mm]f(x_0)<0[/mm] und existiere eine Nullstelle
> [mm]x^\ast[/mm] von [mm]f[/mm] links neben [mm]x_0[/mm], dann gilt natürlich
> [mm]dx/dt=f(x)<0[/mm] für [mm]x\in (x^\ast,x_0)[/mm], d.h. [mm]x[/mm] fällt streng
> monoton in diesem Intervall.

O.K.

>  Damit finden wir ein [mm]t^\ast[/mm] so
> groß, dass für [mm]X(t):=x(t)-x^\ast[/mm] gilt: [mm]|n(t)|\ll 1[/mm]

Was ist n(t) ??????


> für
> [mm]t>t^\ast[/mm] und damit können wir linearisieren (+Taylor) und
> erhalten
>  [mm]dX(t)/dt\approx X(t)f'(x^\ast)\quad $\Rightarrow X(t)\propto \exp(f'(x^\ast)t)[/mm]


Was bedeutet  [mm] X(t)\propto \exp(f'(x^\ast)t) [/mm]  ????


FRED

>  
> Nun ist es klar, falls [mm]f[/mm] bei [mm]x^\ast[/mm] einen Vorzeichenwechsel
> hat, damit hier also von - nach + und damit [mm]f'(x^\ast)<0[/mm],
> womit [mm]X(t)\to 0[/mm] und damit [mm]x(t)\to x^\ast[/mm] für [mm]t\to \infty[/mm]
> gilt.
>
> Wenn aber nun aber [mm]f[/mm] die [mm]x[/mm]-Achse an der Stelle [mm]x^\ast[/mm] nur
> berührt? Dann funktioniert das oben ja nicht?
>  
> Würde mich sehr über Hilfe freuen
>  
> Liebe Grüße
>  DudiPupan


Bezug
                
Bezug
Gew. aut. DGL - Konvergenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:04 Di 21.04.2015
Autor: DudiPupan

Halo Fred,

> > First-oder autonomus initial value problem:
>  >  [mm]\dot x=f(x),\quad x(0)=x_0,[/mm]
>  >  where [mm]f[/mm] is such that
> the
> > solutions are unique (e.g. [mm]f\in C^1[/mm]).
>  >  (i) If [mm]f(x_0)=0[/mm]
> then
> > [mm]x(t)=x_0[/mm] for all [mm]t[/mm].
>  >  (ii) If [mm]f(x_0)\neq 0[/mm], then [mm]x(t)[/mm] converges to the first
> > zero left ([mm]f(x_0)<0[/mm]) respectively right ([mm]f(x_0)>0[/mm]) of [mm]x_0[/mm].
> > If there ist no such zero the solution converges to
> > [mm]-\infty[/mm], respectively [mm]\infty[/mm].
>  >  
> > Guten Abend zusammen,
>  >  
> > ich muss für eine Präsentation die oben stehenden
> > Aussagen beweisen und bin mir bei (ii) etwas unsicher.
>  >  
> > (i) Ist klar. Hier ist ja die Aussage einfach, dass die
> > Ruhelage einer autonomen gew. DGL 1. Ord. schon durch die
> > Nullstellen von [mm]f[/mm] gegeben ist. Dies gilt, da für [mm]f(x_0)=0[/mm]
> > offensichtlich [mm]x\equiv x_0[/mm] (eindeutige) Lösung des AWPs
> > ist.
>  >  
> > Bei (ii) habe ich mir folgendes gedacht:
>  >  Sei also [mm]x_0[/mm] mit [mm]f(x_0)<0[/mm] und existiere eine Nullstelle
> > [mm]x^\ast[/mm] von [mm]f[/mm] links neben [mm]x_0[/mm], dann gilt natürlich
> > [mm]dx/dt=f(x)<0[/mm] für [mm]x\in (x^\ast,x_0)[/mm], d.h. [mm]x[/mm] fällt streng
> > monoton in diesem Intervall.
>  
> O.K.
>  
> >  Damit finden wir ein [mm]t^\ast[/mm] so

> > groß, dass für [mm]X(t):=x(t)-x^\ast[/mm] gilt: [mm]|n(t)|\ll 1[/mm]
>
> Was ist n(t) ??????

Oh, das ist ein Tippfehler. Sollte natürlich [mm] $|X(t)|\ll [/mm] 1$ heißen.

>  
>
> > für
> > [mm]t>t^\ast[/mm] und damit können wir linearisieren (+Taylor) und
> > erhalten
>  >  [mm]dX(t)/dt\approx X(t)f'(x^\ast)\quad $\Rightarrow X(t)\propto \exp(f'(x^\ast)t)[/mm]
>  
>
> Was bedeutet  [mm]X(t)\propto \exp(f'(x^\ast)t)[/mm]  ????

Das soll heißen, dass sich $X(t)$ propotrional zu $  [mm] \exp(f'(x^\ast)t)$ [/mm] verhält.

>  
>
> FRED
>  >  
> > Nun ist es klar, falls [mm]f[/mm] bei [mm]x^\ast[/mm] einen Vorzeichenwechsel
> > hat, damit hier also von - nach + und damit [mm]f'(x^\ast)<0[/mm],
> > womit [mm]X(t)\to 0[/mm] und damit [mm]x(t)\to x^\ast[/mm] für [mm]t\to \infty[/mm]
> > gilt.
> >
> > Wenn aber nun aber [mm]f[/mm] die [mm]x[/mm]-Achse an der Stelle [mm]x^\ast[/mm] nur
> > berührt? Dann funktioniert das oben ja nicht?
>  >  
> > Würde mich sehr über Hilfe freuen
>  >  
> > Liebe Grüße
>  >  DudiPupan
>  

Und vielen Dank für deine schnelle Antwort.

Liebe Grüße
Dudi

Bezug
                        
Bezug
Gew. aut. DGL - Konvergenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:01 Di 21.04.2015
Autor: DudiPupan


> > > Bei (ii) habe ich mir folgendes gedacht:
>  >  >  Sei also [mm]x_0[/mm] mit [mm]f(x_0)<0[/mm] und existiere eine
> Nullstelle
> > > [mm]x^\ast[/mm] von [mm]f[/mm] links neben [mm]x_0[/mm], dann gilt natürlich
> > > [mm]dx/dt=f(x)<0[/mm] für [mm]x\in (x^\ast,x_0)[/mm], d.h. [mm]x[/mm] fällt streng
> > > monoton in diesem Intervall.

Oder ist es hier vielleicht besser mit Monotonie und Beschränktheit zu argumentieren?

Denn gäbe es hier einen Zeitpunkt [mm] $t^\ast$ [/mm] mit [mm] $x(t^\ast)=x^\ast$, [/mm] dann wäre [mm] $\bar{x}(t):=x(t+t^\ast)$ [/mm] die Lösung der DGL [mm] $\frac{d\bar{x}}{dt}(t)=\frac{dx}{dt}(t+t^\ast)=f(x(t+t^\ast))=f(\bar{x}(t))$ [/mm] und damit müsste nach (i) gelten [mm] $\bar{x}(t)= x^\ast$ [/mm] für alle t und damit auch [mm] $x\equiv x^\ast$. [/mm] Dies ist nun aber ein Widerspruch zu [mm] $f(x_0)\neq [/mm] 0$, da dann [mm] $f(x_0)=f( x^\ast)=0. [/mm]
Damit gilt [mm] $x(t)>x^\ast$ [/mm] und da $x$ für [mm] $x^\ast
Ich denke dieser Ansatz wird sinnvoller sein, als der erste den ich hatte mit der Linearisierung.

Würde mich sehr über ein Feedback freuen

Vielen Dank

Liebe Grüße
Dudi

Bezug
                                
Bezug
Gew. aut. DGL - Konvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mi 22.04.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Gew. aut. DGL - Konvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mi 22.04.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]