matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenGeschwindigkeitsfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Ganzrationale Funktionen" - Geschwindigkeitsfunktion
Geschwindigkeitsfunktion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geschwindigkeitsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:53 Do 09.03.2017
Autor: steve.joke

Aufgabe
Mimi geht eine halbe Stunde Joggen. Dabei läuft sie zur Gerichtslinde und auf einem anderen Weg wieder zurück. Ihre Geschwindigkeit lässt sich durch folgende Funktion modellieren:

v(t) = [mm] 0,4t^3 [/mm] – [mm] 18t^2 [/mm] + 180t  v(t) in m/min, t in min

a) Geben Sie einen sinnvollen Definitionsbereich an.
b) Geben Sie an, wann Mimi umgekehrt.



Hallo,

was würdet Ihr hier als sinnvollen D angeben. Ich würde sagen bis zur ersten NS, d.h. [mm] D_v [/mm] = [0 ; 15]

b) verstehe ich nicht ganz. Ab 15 min wird ihre Geschwindigkeit ja negativ, das kann ja nicht sein. Heißt es, dass sie nach dem Hochpunkt zurückkehrt und nur 15 min läuft, nicht 30 min?

Ähnliche Frage auch bei dieser Funktion:

g(t) = [mm] 0,1t^3 [/mm] – [mm] 2t^2 [/mm] + 9,6t, g(t) in kg/Monat, t in Monaten

Dabei gibt g(t) die Gewichtsveränderung eines Tieres an.

Auch hier würde ich für einen sinnvollen Definitionsbereich sagen: [mm] D_g=[0 [/mm] ; 8]  bis zur ersten Nullstelle. Genauso würde ich sagen, dass das Tier bis 8 Monate zunimmt und danach abnimmt bis zur nächsten Nullstelle, also bis t=12?

VG

        
Bezug
Geschwindigkeitsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 Do 09.03.2017
Autor: M.Rex

Hallo

> Mimi geht eine halbe Stunde Joggen. Dabei läuft sie zur
> Gerichtslinde und auf einem anderen Weg wieder zurück.
> Ihre Geschwindigkeit lässt sich durch folgende Funktion
> modellieren:

>

> v(t) = [mm]0,4t^3[/mm] – [mm]18t^2[/mm] + 180t v(t) in m/min, t in min

>

> a) Geben Sie einen sinnvollen Definitionsbereich an.
> b) Geben Sie an, wann Mimi umgekehrt.

>
>

> Hallo,

>

> was würdet Ihr hier als sinnvollen D angeben. Ich würde
> sagen bis zur ersten NS, d.h. [mm]D_v[/mm] = [0 ; 15]

Hier würde ich das Intervall bis zur zweiten Nullstelle definieren.


>

> b) verstehe ich nicht ganz. Ab 15 min wird ihre
> Geschwindigkeit ja negativ, das kann ja nicht sein. Heißt
> es, dass sie nach dem Hochpunkt zurückkehrt und nur 15 min
> läuft, nicht 30 min?

Nein, eine Geschwindigkeit hat ja eine Richtung (wie du aus der Physik evtl kennst). Das bedeutet, eine negative Geschwindigkeit bedeutet hier, dass sie einen anderen Weg nimmt, der "in der anderen Richtung" des Zielpunkts liegt.
Wenn also die Geschwindigkeit "zur Gerichtslinde hin" als positiv definiert ist, und du dann aber einen Weg "von der Linde weg" läufst, hast du eine negative Geschwindigkeit.

>

> Ähnliche Frage auch bei dieser Funktion:

>

> g(t) = [mm]0,1t^3[/mm] – [mm]2t^2[/mm] + 9,6t, g(t) in kg/Monat, t in
> Monaten

>

> Dabei gibt g(t) die Gewichtsveränderung eines Tieres an.

>

> Auch hier würde ich für einen sinnvollen
> Definitionsbereich sagen: [mm]D_g=[0[/mm] ; 8] bis zur ersten
> Nullstelle. Genauso würde ich sagen, dass das Tier bis 8
> Monate zunimmt und danach abnimmt bis zur nächsten
> Nullstelle, also bis t=12?

Das ist ok.

>

> VG

Marius

Bezug
                
Bezug
Geschwindigkeitsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 Do 09.03.2017
Autor: steve.joke

Danke für die schnelle Antwort

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]