matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenElektrotechnikGeschwindigkeiten, PPL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Elektrotechnik" - Geschwindigkeiten, PPL
Geschwindigkeiten, PPL < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geschwindigkeiten, PPL: Hilfestellung, Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 15:44 Do 21.07.2011
Autor: Marcel08

Geschwindigkeiten auf einer Parallelplattenleitung


Um den Unterschied zwischen den verschiedenen Geschwindigkeitsdefinitionen zu verdeutlichen, betrachtet man zum Beispiel die Wellenausbreitung in einer Bandleitung (Plattenbreite a, Plattenabstand b [mm] \to k_{y}=\bruch{n\pi}{b}). [/mm]


Aus der Dispersionsbeziehung

(1) [mm] \beta:=k_{x}=\wurzel{\bruch{\omega^{2}}{c^{2}_{1}}-\vektor{\bruch{n\pi}{b}}^{2}} [/mm]


erhält man die Phasengeschwindigkeit

(2) [mm] v_{p}=\bruch{\omega}{\beta}=c_{1}\bruch{1}{\wurzel{1-\vektor{\bruch{n\pi{c_{1}}}{b\omega}}^{2}}}>c_{1} [/mm]


Dahingegen ist die Gruppengeschwindigkeit

(3) [mm] v_{g}=\bruch{d\omega}{d\beta}=\bruch{1}{\bruch{d\omega}{d\beta}}=\bruch{\wurzel{\bruch{\omega^{2}}{c_{1}^{2}}-\vektor{\bruch{n\pi}{b}}}}{\bruch{1}{2}*\bruch{2\omega}{c_{1}^{2}}}=c_{1}\wurzel{1-\vektor{\bruch{n\pi{c_{1}}}{b\omega}}^{2}}


Meine Frage:

Die Phasengeschwindigkeit [mm] v_{p} [/mm] erhalte ich durch Umstellen der Gleichung (1). Ich kann auch hier wieder nicht nachvollziehen, wie ich mit Gleichung (2) auf Gleichung (3) gelange. Um die entsprechende Ableitung bilden zu können, brauche ich doch explizit eine Funktion [mm] \omega(\beta). [/mm] Gibt es da vielleicht einen Trick, um eine solche Gleichung zu erhalten, die man dann wie gewohnt ableiten kann? Über einen hilfreichen Tipp würde ich mich freuen; vielen Dank!



Viele Grüße, Marcel

        
Bezug
Geschwindigkeiten, PPL: Antwort
Status: (Antwort) fertig Status 
Datum: 23:43 Do 21.07.2011
Autor: qsxqsx

Hallo Marcel,

Bin vor kurzer Zeit am Gleichen gestolpert! Deine Frage ist doch konkret gesagt, "wie kommt man auf (3)"? Genau, du brauchst [mm] w(\beta) [/mm] !

Erstmal erläuterungen:
Man nehme an es gäbe [mm] f_{A} [/mm] -> die Trägerfrequenz und [mm] f_{B} [/mm] -> Informationsfrequenz. Es ist [mm] f_{A} [/mm] >> [mm] f_{B}. [/mm] Es entstehen Signale der 3 Frequenzen [mm] f_{A} [/mm] - [mm] f_{B}, f_{A}, f_{A} [/mm] + [mm] f_{B}. [/mm] Die Information ist mit den 3 Frequenzen redundant, es genügen also 2 wie z.B. [mm] f_{A} [/mm] und [mm] f_{A} [/mm] + [mm] f_{B}. [/mm]
Nennen wir nun [mm] f_{1} [/mm] := [mm] f_{A} [/mm]  und [mm] f_{2} [/mm] := [mm] f_{A} [/mm] + [mm] f_{B}. [/mm] Zu [mm] f_{1} [/mm] gehört ein [mm] \beta_{1} [/mm] und zu [mm] f_{2} [/mm] ein [mm] \beta_{2}. [/mm] Also folgt:
E(x,t) = [mm] E_{0}(cos(w_{1}*t [/mm] - [mm] \beta_{1}*z) [/mm] + [mm] cos(w_{2}*t [/mm] - [mm] \beta_{2}*z)) [/mm] =  [mm] 2E_{0}*cos(\bruch{w_{1} + w_{2}}{2}*t [/mm] -  [mm] \bruch{\beta_{1} + \beta_{2}}{2}*z)*cos(\bruch{w_{1} - w_{2}}{2}*t [/mm] -  [mm] \bruch{\beta_{1} - \beta_{2}}{2}*z) [/mm]  (Mit Hilfe von Trigonometrischen Formeln).

PHASENGESCHWINDIGKEIT:
Weil nun [mm] w_{1} \approx w_{2} [/mm] und [mm] \beta_{1} \approx \beta_{2} [/mm] ist nur der erste cos-Term für die Phase relevant und es ist
[mm] v_{p} [/mm] = [mm] \bruch{w_{1} + w_{2}}{\beta_{1} + \beta_{2}} \approx \bruch{w}{\beta} [/mm]

GRUPPENGESCHWINDIGKEIT (So wird Infomation Transportiert!):
[mm] \bruch{w_{1} - w_{2}}{2}*t [/mm] - [mm] \bruch{\beta_{1} - \beta_{2}}{2}*z [/mm] = const.
Also [mm] v_{g} [/mm] = [mm] \bruch{w_{1} - w_{2}}{\beta_{1} - \beta_{2}} \approx \bruch{\partial w}{\partial \beta} [/mm]

Hier die Antwort:
[mm] v_{g} [/mm] = [mm] \bruch{dw}{d\beta} [/mm] =  [mm] \bruch{dw(\beta)}{d\beta} [/mm] = [mm] \bruch{d\wurzel{\bruch{\beta^{2} + \bruch{n*\pi}{b}^{2}}{\mu*\varepsilon}}}{d\beta} [/mm] = ...
wobei ich c = [mm] \bruch{1}{\wurzel{\mu*\varepsilon}} [/mm] benutzt hab.

Du bekommst nach dem Ableiten einen Audruck in Abhängigkeit von [mm] \beta. [/mm] Setze dann einfach für [mm] \beta [/mm] wieder [mm] \beta [/mm] = [mm] \wurzel{w^{2}*\mu*\varepsilon - (\bruch{n*\pi}{b})^{2}} [/mm] ein.

Gruss

(Achtung du hast bei (3) einen Fehler, es ist [mm] (\bruch{n*\pi}{b})^{2} [/mm] unter der Wurzel und nicht [mm] \bruch{n*\pi}{b}.) [/mm]

Bezug
                
Bezug
Geschwindigkeiten, PPL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:44 Fr 22.07.2011
Autor: Marcel08

Hallo!

Ja vielen Dank, das passt in der Tat.


Viele Grüße, Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]