matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteGeschlossene Formel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Geschlossene Formel
Geschlossene Formel < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geschlossene Formel: "Idee"
Status: (Frage) beantwortet Status 
Datum: 20:26 Mo 25.06.2007
Autor: mariluz

Aufgabe
Sei [mm] (x_{n})_{n\in\IN} [/mm] die Folge reeller Zahlen, die rekursiv definiert ist durch:
[mm] x_{1}:=1, x_{2}:=1, x_{n+2}:=x_{n+1}+x_{n} \forall n\in\IN [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt:

Wie kann ich finden eine geschlossene Formel für [mm] x_{n} [/mm] von der Form

                           [mm] x_{n}=a(\lambda_{1})^n+b(\lambda_{2})^n [/mm]

Sollen nicht die [mm] \lambda_{1} [/mm] und [mm] \lambda_{2} [/mm] die Eigenwerte sein, wobei [mm] \lambda_{1}=[1+(5)^1/2]/2 [/mm] und [mm] \lambda_{2}=[1-(5)^1/2]/2? [/mm]

        
Bezug
Geschlossene Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:52 Mo 25.06.2007
Autor: felixf

Hallo Mariluz!

> Sei [mm](x_{n})_{n\in\IN}[/mm] die Folge reeller Zahlen, die
> rekursiv definiert ist durch:
>  [mm]x_{1}:=1, x_{2}:=1, x_{n+2}:=x_{n+1}+x_{n} \forall n\in\IN[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt:
>  
> Wie kann ich finden eine geschlossene Formel für [mm]x_{n}[/mm] von
> der Form
>  
> [mm]x_{n}=a(\lambda_{1})^n+b(\lambda_{2})^n[/mm]

Schreib doch mal eine Formel [mm] $(x_{n+1}, x_n)^t [/mm] = A [mm] (x_n, x_{n-1})^t$ [/mm] auf mit einer $2 [mm] \times [/mm] 2$-Matrix $A$.

> Sollen nicht die [mm]\lambda_{1}[/mm] und [mm]\lambda_{2}[/mm] die Eigenwerte
> sein,

Es sind die Eigenwerte der Matrix $A$.

> wobei [mm]\lambda_{1}=[1+(5)^1/2]/2[/mm] und
> [mm]\lambda_{2}=[1-(5)^1/2]/2?[/mm]  

Das kann wohl sein. Stell doch erstmal die Matrix $A$ auf. Du kannst jetzt [mm] $(x_{n+1}, x_n)^t [/mm] = A [mm] (x_n, x_{n-1})^t [/mm] = [mm] A^2 (x_{n-1}, x_{n-2}) [/mm] = [mm] \dots$ [/mm] schreiben. Druecke hiermit mal [mm] $(x_{n+1}, x_n)$ [/mm] durch $A$ und [mm] $(x_1, x_2)$ [/mm] aus.

Als naechstes diagonalisierst du die Matrix und berechnest insbesondere die Transformationsmatrix und deren Invereses. Kannst du damit die eben erhaltende Gleichung vereinfachen? Oder sogar eine explizite Formel fuer [mm] $x_n$ [/mm] herleiten?

Wenn du nicht weiterkommst, schreib erstmal hier hin was du gemacht/herausgefunden hast.

LG Felix


Bezug
                
Bezug
Geschlossene Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:57 Di 26.06.2007
Autor: mariluz

vielen vielen Dank!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]