matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenGeschlossene Differntialform
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Partielle Differentialgleichungen" - Geschlossene Differntialform
Geschlossene Differntialform < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geschlossene Differntialform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:59 So 18.03.2007
Autor: Aias

Aufgabe
Stelen Sie fest, ob die differetialform w1 und w2 geschlossen sind und berechnen Sie gegebenfalls eine Stammfunktion :

w = [(2x^2y + xy^2y + 3xy - 1)/x]dx + [(x^2y + [mm] 2xy^2 [/mm] + 3xy+ 2)/y]dy

w = 2dx + 3dy + e^(x+1)y*[(1+xy)dx+x(1+x)dy]

Kann bitte einer sagen, woran ich erkennen kann, ob eine Funktion geschlossen ist ?

Habe nur gefunden, dass dw = 0 ist bzw sein soll ....

Die Funktion

w = (-ydx + [mm] xdy)/(x^2 [/mm] + [mm] y^2 [/mm] )

soll zum Beispiel geschlossen sein! Ist das Vorgehen dann, einfach Null setzen und dann integriere, aber mit welchen Grenzen ?

(Wenn man von Null bis x bzw y integriet, bekomm man xy = xy raus.. es muss aber nen einfacheren Weg geben, da ich keine Ahnung habe, wie ich

w = 2dx + 3dy + e^(x+1)y*[(1+xy)dx+x(1+x)dy]

dann lösen kann ohne ne halbe Stunde zu brauchen ? )

Kann mir jmd helfen ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Geschlossene Differntialform: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 So 18.03.2007
Autor: Leopold_Gast

Für eine stetig differenzierbare Funktion [mm]f = f(x,y,z,\ldots)[/mm], also eine Differentialform vom Grad 0, ist das Differential erklärt durch

[mm]\mathrm{d}f = \frac{\partial{f}}{\partial{x}} \, \mathrm{d}x + \frac{\partial{f}}{\partial{y}} \, \mathrm{d}y + \frac{\partial{f}}{\partial{z}} \, \mathrm{d}z + \ldots[/mm]

Und für eine Differentialform

[mm]\omega = u \, \mathrm{d}x + v \, \mathrm{d}y + w \, \mathrm{d}z + \ldots[/mm]

vom Grad 1 (wobei [mm]u = u(x,y,z,\ldots), \, v = v(x,y,z,\ldots) , \, w = w(x,y,z,\ldots), \, \ldots[/mm] stetig differenzierbare Funktionen sind) gilt

[mm]\mathrm{d} \omega = \mathrm{d}u \wedge \mathrm{d}x + \mathrm{d}v \wedge \mathrm{d}y + \mathrm{d}w \wedge \mathrm{d}z + \ldots[/mm]

Für [mm]\mathrm{d}u[/mm] usw. mußt du die Definition für [mm]\mathrm{d}f[/mm] von oben verwenden. Das Dachprodukt ist assoziativ. Du darfst mit ihm distributiv bezüglich der Addition rechnen. Ferner ist es verträglich mit der Multiplikation von Funktionen (die hier wie Skalare in einem Vektorraum zu behandeln sind). Nur bei einer Sache mußt du aufpassen: Das Dachprodukt ist nicht kommutativ, sondern antikommutativ. Bei jeder Vertauschung muß man das Vorzeichen ändern, z.B.

[mm]\mathrm{d}y \wedge \mathrm{d}x = - \mathrm{d}x \wedge \mathrm{d}y[/mm]

Das heißt z.B. insbesondere

[mm]\mathrm{d}x \wedge \mathrm{d}x = - \mathrm{d}x \wedge \mathrm{d}x \ \ \Rightarrow \ \ \mathrm{d}x \wedge \mathrm{d}x = 0[/mm]

Wenn du die obige Definition von [mm]\mathrm{d} \omega[/mm] für den Spezialfall von zwei Variablen

[mm]\omega = u \, \mathrm{d}x + v \, \mathrm{d}y[/mm]

anwendest, erhältst du mit diesen Regeln von ganz alleine

[mm]\mathrm{d} \omega = \left( - \frac{\partial{u}}{\partial{y}} + \frac{\partial{v}}{\partial{x}} \right) \, \mathrm{d}x \wedge \mathrm{d}y[/mm]

Probiere das aus!

Wenn du also überprüfen willst, ob eine solche Differentialform geschlossen ist, ob also [mm]\mathrm{d} \omega = 0[/mm] gilt, mußt du eigentlich nur den Ausdruck

[mm]- \frac{\partial{u}}{\partial{y}} + \frac{\partial{v}}{\partial{x}}[/mm]

berechnen. Ist der Null, so ist die Differentialform geschlossen, andernfalls nicht.

Nehmen wir dein Beispiel:

[mm]\omega = \frac{-y \, \mathrm{d}x + x \, \mathrm{d}y}{x^2 + y^2} = \frac{-y}{x^2 + y^2} \, \mathrm{d}x + \frac{x}{x^2 + y^2} \, \mathrm{d}y[/mm]

Hier ist also

[mm]u = u(x,y) = \frac{-y}{x^2 + y^2} \, , \ \ v = v(x,y) = \frac{x}{x^2 + y^2}[/mm]

Man berechnet

[mm]\frac{\partial{u}}{\partial{y}} = \frac{\partial{v}}{\partial{x}} = \frac{-x^2 + y^2}{\left( x^2 + y^2 \right)^2}[/mm]

Es folgt sofort:

[mm]\mathrm{d} \omega = 0[/mm]

Kenner der komplexen Funktionentheorie erkennen in dieser Differentialform übrigens den Imaginärteil der komplexen Differentialform [mm]\frac{\mathrm{d}z}{z}[/mm] wieder.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]