matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieGerüchte
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Gerüchte
Gerüchte < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerüchte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 Sa 03.03.2007
Autor: Riley

Aufgabe
In einer Stadt mit n+1 Einwohnern erzählt eine Person einer zweiten ihr Gerücht. Diese ihrerseits erzählt es einer dritten und so weiter. Bei jedem Schritt wird der "Empfänger" rein zufällig aus den n möglichen ausgewählt. Das Gerücht beginnt bei einem rein zufällig ausgewählten Initiator und werde r-mal weitererzählt.
(a) Geben Sie einen geeignten Wahrschkraum an

(b) Man berechne die Wahrschkeiten folgender Ereignisse:
     (i) das Gerücht kehrt nicht zum Urheber zurück
     (ii) das Gerücht wird keiner Person zweimal erzählt

(c) Man berechne den Limes der Wahrscheinlichkeit für das Ereignis in (b)i für n -> [mm] \infty, [/mm] falls r=n+1.

Guten Abend,
hier hab ich noch so ein mich-zum-verzweifeln-bringt Aufgabe.
Als erstes hab ich mir überlegt, könnte man dafür das Urnenmodell mit Reihenfolge nehmen? eigentlich dachte ich ohne zurücklegen, aber da in der aufgabe steht dass der empfänger immer aus n möglichkeiten ausgewählt wird, ist es doch mit zurücklegen, nur dass es sich niemand selbst erzählt?
d.h. es gibt [mm] \frac{n!}{(n-r)!} [/mm] Möglichkeiten?

(a) [mm] \Omega [/mm] = [mm] \{ (w_1,...w_r): w_i \in {1....n} \}, [/mm] A=P(A) (Potenzmenge)

(b) (i)bedeutet, dass [mm] w_1 [/mm] nicht nochmal auftreten darf, richtig?
      (ii) [mm] w_i [/mm] sind paarweise verschieden ?
aber wie berechnet man davon die Wahrscheinlichkeiten??

viele grüße
riley

        
Bezug
Gerüchte: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Sa 03.03.2007
Autor: wauwau

Also das Gerüchteweitererzählen ist im Prinzip ein r-Tupel (genau der Wahrscheinlichkeitsraum)

Im Fall ohne Beschränkung gäbe es für jeden der r Stellen n Möglichkeiten (nicht n+1 - wegen dem nicht selbsterzählen) also insgesamt

[mm] n^{r} [/mm]
Möglichkeiten

(i) An der ersten STelle n Möglichkeiten und an den restlichen r-1 Stellen jeweils n-1 Möglichkeiten  (dem Gerüchte-urprungserzähler und sich selbst nicht). Daher günstige Fälle
[mm] n(n-1)^{r-1} [/mm]

daher Wahrscheinlichkeit^

[mm] \bruch{n(n-1)^{r-1}}{n^{r}} [/mm] =

[mm] (1-\bruch{1}{n})^{r-1} [/mm]

bei r=n+1 strebt das gegen [mm] e^{-1} [/mm]

(ii) Das Gerücht wird keiner Person 2 mal erzählt.
Das heißt man muss aus den n Personen r auswählen also
[mm] \vektor{n \\ r} [/mm] Möglichkeiten daher ist die Wahrscheinlichkeit

[mm] \bruch{\vektor{n \\ r}}{n^{r}} [/mm]

Das wars




Bezug
                
Bezug
Gerüchte: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:05 Sa 03.03.2007
Autor: Riley

Hi,
vielen dank für deine hilfe!
warum benutzt man bei (ii) aber das modell"ziehen ohne zurücklegen ohne Reihenfolge"? warum nimmt man nicht das mit reihenfolge?
also dass es n (n-1) ... (n-r+1) Möglichkeiten gibt das Gerücht weiterzuerzählen??

viele grüße
riley

Bezug
                        
Bezug
Gerüchte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 So 04.03.2007
Autor: wauwau

Du hast Recht die Reihenfolge ist doch entscheidend.....
Habe ich übersehen
LG
wauwau

Bezug
                                
Bezug
Gerüchte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 So 04.03.2007
Autor: Riley

hm, okay, d.h.

P(B) = [mm] \frac{n (n-1) ... (n-r+1)}{n^r} [/mm]

stimmt es dann so ganz sicher?
und die reihenfolge ist wichtig, damit eine Gleichverteilung vorliegt und man die wahrscheinlichkeit auf diesem wege berechnen kann'?

viele grüße
riley

Bezug
                                        
Bezug
Gerüchte: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 So 04.03.2007
Autor: wauwau

Genau.

bei r=n  also  

[mm] [mm] \bruch{n!}{n^{r}} [/mm] wegen der Stirlingschen formel geht die Grenzwahrscheinlichkeit aber gegen 0, was auch einleuchtend ist aber gar nicht gefragt war.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]