matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenGeradenschar / Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - Geradenschar / Ebene
Geradenschar / Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geradenschar / Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 Mo 16.04.2007
Autor: Cr4izy

Aufgabe
Zeige, dass alle Geraden der Schar [mm] h_{t}: \vec{x}=\vektor{3 \\ 0 \\3}+\mu*\vektor{2 \\ t \\0} [/mm] in einer Ebene verlaufen.

Einen wunderschönen Montag wünsche ich,

in meiner letzten Vorbereitungsphase auf meine morgige Abiturprüfung bin ich auch ein Problem gestoßen, so habe ich keine Ahnung, wie ich zeigen soll, dass die oben angegebene Geradenschar eine Ebene bildet.
Der Richtungsvektor verläuft parallel zur 1,2-Ebene, das ist mit bewusst, da [mm] x_{3}=0. [/mm]
Wenn man also logisch schlussfolgert, müsste die Ebene die Gleichung [mm] x_{3}=3 [/mm] haben, aber wie genau soll ich das zeigen?
Wäre sehr nett, wenn mir das jemand allgemein erklären könnte.

Lg,

Cr4izy


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Geradenschar / Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Mo 16.04.2007
Autor: Mary15


> Zeige, dass alle Geraden der Schar [mm]h_{t}: \vec{x}=\vektor{3 \\ 0 \\3}+\mu*\vektor{2 \\ t \\0}[/mm]
> in einer Ebene verlaufen.
>  Einen wunderschönen Montag wünsche ich,
>  
> in meiner letzten Vorbereitungsphase auf meine morgige
> Abiturprüfung bin ich auch ein Problem gestoßen, so habe
> ich keine Ahnung, wie ich zeigen soll, dass die oben
> angegebene Geradenschar eine Ebene bildet.
>  Der Richtungsvektor verläuft parallel zur 1,2-Ebene, das
> ist mit bewusst, da [mm]x_{3}=0.[/mm]
>  Wenn man also logisch schlussfolgert, müsste die Ebene die
> Gleichung [mm]x_{3}=3[/mm] haben, aber wie genau soll ich das
> zeigen?
> Wäre sehr nett, wenn mir das jemand allgemein erklären
> könnte.
>  
> Lg,
>  
> Cr4izy
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hi,
ich würde hier so begründen, dass alle Punkte der Geradenschar die Koordinate [mm] x_{3} [/mm] = 3 haben (unabhängig von t und [mm] \mu). [/mm] D.h. alle Punkte liegen in einer Ebene, die parallel zu [mm] x_{1}x_{2}-Ebene [/mm] ist.

Viel Erfolg bei Abi-Klausur!


Bezug
        
Bezug
Geradenschar / Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Mo 16.04.2007
Autor: musicandi88

Hallo,

setz mal für t einmal 1 und einmal 2 ein... du erhälst 2 verschiedene RVs. Stell hermit die Ebenengleichung auf.
Dann kannst du in deine ermittelte Ebenengleichung den allg. Ortsvektor für einen Punkt der Geradenschar einsetzen, und du zeigst dadurch, dass das Gleichungssystem eine Lösung hat, dass alle Geraden der Schar in dieser Ebene liegen.
Benutz z.B. um die Lösbarkeit zu zeigen..
Die Determinante der 3 RVs [mm] \not=0 [/mm] wenn das Gleichungssystem eine Lösung hat.

Liebe Grüße
Andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]