matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungGeraden im KOS
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Geraden im KOS
Geraden im KOS < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geraden im KOS: Besondere Lage
Status: (Frage) beantwortet Status 
Datum: 12:38 So 27.08.2006
Autor: Informacao

Aufgabe
Notiere die Geradengleichung ausführlich als Gleichung mit beiden Variablen x, y. Zeichne die Gerade. Welche der Punkte [mm] P_{0}(-4|3), P_{1}(0|-2), P_{2}(0|2), P_{3}(3|-2,5), P_{4}(-2|0), P_{5}(0|0) [/mm] liegen auf dieser Geraden?

a.) x=3     b.) y=3

Hallo,

ich habe eine Frage zu der aufgabe:

Eine geradengleichung hat ja die Form:
y=m*x+b , oder?

wie ist das denn da jetzt gemeint? ich krieg das nicht hin...
und wie muss ich dann testen, ob die punkte auf der geraden liegen?
einfach einsetzen? aber dafür bräuchte ich ja erst die geradengleichung-

ich würde mich über hilfe freuen!
viele grüße
informacao

        
Bezug
Geraden im KOS: Tipp.
Status: (Antwort) fertig Status 
Datum: 12:58 So 27.08.2006
Autor: Christian

Hallo.

Also wenn das die ganze Aufgabe sein soll, würde ich mal behaupten, daß $x=3$ und $y=3$ die fraglichen Geradengleichungen sind.

> Eine geradengleichung hat ja die Form:
> y=m*x+b , oder?

Fast alle Geraden haben eine Gleichung dieser Form. Eben alle bis auf die, die senkrecht zur x-Achse sind. Die haben Gleichungen der Form x=b.
Und eine solche ist a).

Gruß,
Christian

Bezug
                
Bezug
Geraden im KOS: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:08 So 27.08.2006
Autor: Informacao

Stimmt, danke, dass hab ich verstanden...

aber wie mach ich das dann mit den Punkten...wie finde ich dann raus, ob die auf dem Graphen liegen? rechnerisch meine ich...

Bezug
                        
Bezug
Geraden im KOS: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 So 27.08.2006
Autor: Disap

Hey.

> Stimmt, danke, dass hab ich verstanden...
>  
> aber wie mach ich das dann mit den Punkten...wie finde ich
> dann raus, ob die auf dem Graphen liegen? rechnerisch meine
> ich...

Na ja, zum einen ist da die Möglichkeit: Überlegen. Denn, wie sieht x=3  eigentlich aus? Ganz einfach - es ist eine senkrechte. Sie geht durch alle Y-Werte, aber hat nur den X-Wert 3. Steht eben Senkrecht. Sie läuft also durch alle Punkte mit der (X-) Stelle 3. Egal ob der Y-Wert 10 oder 4 oder -3 ist.

Und y=3? Na, das ist ähnlich, dies ist eine waagerechte bzw. eine parallele zur X-Achse. Sie hat quasi jeden X-Wert, durchläuft aber nur den Y-Wert 3.

Man kann es also ablesen.
Oder man macht es so wie immer - durch einsetzen.

Rein fiktiv lautet ein Punkt [mm] A(\red{3}|\blue{12}) [/mm]

Für [mm] \red{x}=3 [/mm] kannst du auch nur den (roten) X-Wert einsetzen, denn in der Gleichung steht nichts von einem y (blau)

Bei Aufgabe b setzt du dann eben [mm] \blue{y}=3 [/mm] den (blau) Y-Wert ein

[mm] $\blue{12}\not= [/mm] 3$

Da 12 ungleich 3 ist, liegt der Punkt nicht auf der Geraden von Aufg. b, sondern nur von Aufgabe a.

Alles klar?



Schöne Grüße
Disap

Bezug
                                
Bezug
Geraden im KOS: alles klar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:23 So 27.08.2006
Autor: Informacao

ach ja danke, jetzt ist alles klar!!

informacao

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]