matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenGeraden bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Vektoren" - Geraden bestimmen
Geraden bestimmen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geraden bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 Sa 24.03.2007
Autor: belf

Aufgabe
Gegeben sind die Punkte A(2;2), B(-2;3) und C(4;2). Bestimmen Sie die Gleichung der Parallelen zu AB, welche durch C verläuft.

Hallo !

Ich habe diese Aufgabe jetzt gelöst aber meine Lösung stimmt nicht mit der Lösung im Buch überein.

Erste Gerade finden

3= -2m + q
2=  2m + q

also q = 2,5 und m = -0,25

meine Lösung g1 : y= -0,25 x + 2,5
Lösung im Buch g1 : [mm] \vektor{x \\ y} [/mm] = [mm] \vektor{2 \\ 2} [/mm] + k [mm] \vektor{6 \\ -1} [/mm] ......oder y = (-x/6)+(14/6)


Zweite Gerade finden

g2 : y= -0,25x + q

C(4;2) => 2 = -1 + q

q=3

meine Lösung g2: y= -0,25x + 3 .... oder [mm] \vektor{x \\ y} [/mm] = [mm] \vektor{4 \\ 2} [/mm] + k [mm] \vektor{4 \\ -1} [/mm]  
Lösung im Buch g2: [mm] \vektor{x \\ y} [/mm] = [mm] \vektor{4 \\ 2} [/mm] + k [mm] \vektor{6 \\ -1} [/mm] .... oder y = -(x/6) + (16/6)

Wer hat Recht ? Und wenn ich falsch bin, wo liegt mein Fehler ?

Danke !


        
Bezug
Geraden bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Sa 24.03.2007
Autor: Kroni


> Gegeben sind die Punkte A(2;2), B(-2;3) und C(4;2).
> Bestimmen Sie die Gleichung der Parallelen zu AB, welche
> durch C verläuft.
>  Hallo !
>  
> Ich habe diese Aufgabe jetzt gelöst aber meine Lösung
> stimmt nicht mit der Lösung im Buch überein.
>
> Erste Gerade finden
>  
> 3= -2m + q
>  2=  2m + q
>  
> also q = 2,5 und m = -0,25
>  
> meine Lösung g1 : y= -0,25 x + 2,5
>  Lösung im Buch g1 : [mm]\vektor{x \\ y}[/mm] = [mm]\vektor{2 \\ 2}[/mm] + k

Hi, hier hat das Buch offensichtlich den Richtungsvektor BC berechnet...
Richtig wäre der Vektor [mm] \vektor{4 \\ -1} [/mm]
und seine Vielfache

> [mm]\vektor{6 \\ -1}[/mm] ......oder y = (-x/6)+(14/6)
>  
>
> Zweite Gerade finden
>  
> g2 : y= -0,25x + q
>  
> C(4;2) => 2 = -1 + q
>  
> q=3
>  
> meine Lösung g2: y= -0,25x + 3 .... oder [mm]\vektor{x \\ y}[/mm] =
> [mm]\vektor{4 \\ 2}[/mm] + k [mm]\vektor{4 \\ -1}[/mm]

Hier stimme ich deiner Lösung zu.

>  Lösung im Buch g2: [mm]\vektor{x \\ y}[/mm] = [mm]\vektor{4 \\ 2}[/mm] + k
> [mm]\vektor{6 \\ -1}[/mm] .... oder y = -(x/6) + (16/6)
>  
> Wer hat Recht ? Und wenn ich falsch bin, wo liegt mein
> Fehler ?
>  
> Danke !

Bitte

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]