matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeGeraden, Schnittpunkte im R^3
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - Geraden, Schnittpunkte im R^3
Geraden, Schnittpunkte im R^3 < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geraden, Schnittpunkte im R^3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Mi 06.03.2013
Autor: Labrinth

Aufgabe
Im [mm] $\mathbb{R}^3$ [/mm] seien vier Punkte gegeben:
[mm] $A:=(x_1,y_1,z_1)$ [/mm]
[mm] $B:=(x_1,y_1,z_2)$ [/mm]
[mm] $C:=(x_3,y_3,z_2)$ [/mm]
[mm] $D:=(x_3,y_3,z_3)$ [/mm]


Guten Tag!

Ich habe leider kaum Vorwissen in LA.

Ich benötige den Schnittpunkt [mm] $AD\cap{}BC$ [/mm] (falls man das so notiert). Wie ich eventuell Geradengleichungen aufstelle, weiß ich im Dreidimensionalen nicht.

Für jede Hilfe bin ich dankbar und auch bereit mitzudenken.

Beste Grüße,
Labrinth

        
Bezug
Geraden, Schnittpunkte im R^3: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Mi 06.03.2013
Autor: steppenhahn

Hallo,

> Im [mm]\mathbb{R}^3[/mm] seien vier Punkte gegeben:
>  [mm]A:=(x_1,y_1,z_1)[/mm]
>  [mm]B:=(x_1,y_1,z_2)[/mm]
>  [mm]C:=(x_3,y_3,z_2)[/mm]
>  [mm]D:=(x_3,y_3,z_3)[/mm]


> Ich benötige den Schnittpunkt [mm]AD\cap{}BC[/mm] (falls man das so
> notiert). Wie ich eventuell Geradengleichungen aufstelle,
> weiß ich im Dreidimensionalen nicht.


Dann stelle doch erstmal beide Geradengleichungen auf.

Bsp: Gerade AD

Du brauchst einen Stützvektor und einen Richtungsvektor. Den Stützvektor [mm] $v_1$ [/mm] erhältst du einfach als einen der beiden vorgegebenen Punkte (z.B. A), der Richtungsvektor [mm] $w_1$ [/mm] ist die Differenz der beiden Punkte (D-A).

Die Geradengleichung lautet dann z.B.

[mm] $g(\lambda) [/mm] = [mm] v_1 [/mm] + [mm] \lambda*w_1$ [/mm]   mit   [mm] $\lambda \in \IR$. [/mm]

Wenn du das auch noch mit der anderen Geraden machst, erhältst du eine zweite Geradengleichung

[mm] $h(\mu) [/mm] = [mm] v_2 [/mm] + [mm] \mu*w_2$ [/mm]    mit    [mm] $\mu \in \IR$. [/mm]

Dann kannst du diese beiden Geraden gleichsetzen und musst das Gleichungssystem für [mm] $\mu, \lambda$ [/mm] lösen:

[mm] $g(\lambda) [/mm] = [mm] h(\mu)$. [/mm]

Wenn du die Lösungen für [mm] $\lambda$ [/mm] bzw. [mm] $\mu$ [/mm] in die Geradengleichungen einsetzt, erhältst du die Schnittpunkte.

Ich rate dir, das mal an einem konkreten Beispiel durchzurechnen, und dann anhand dieses konkreten Beispiels Fragen zu stellen :-)


> Für jede Hilfe bin ich dankbar und auch bereit
> mitzudenken.

Bestens :-)

Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]