matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenGeraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - Geraden
Geraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geraden: parallel oder identisch?
Status: (Frage) beantwortet Status 
Datum: 15:03 Sa 24.02.2007
Autor: jane882

Aufgabe
...

Wenn ich 2 Geraden habe, linear abhängig, und will wissen ob sie parallel oder identisch sind, was mache ich dann?

Parallel wären sie ja wenn die Richtungvektoren gleich oder ein Vielfaches voneinander bilden würden.

Wenn sie das nicht wären, wär die Geraden dann automatisch identisch? Oder kann man das auch noch irgendwie berechnen? Mit Punktprobe oder so?

Danke:)

        
Bezug
Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Sa 24.02.2007
Autor: Trampeltier

Hallo,
du kannst di Identität sehr leicht nachprüfen. Du musst in beide Gleichungen nur den selben X-Wert einsetzen, wenn du nun den gleichen Y-Wert herausbekommst, dann wiederholst du das ganze noch einmal, machst es also mit 2 Punkten, denn eine Gerade ist ja durch 2 Punkte eindeutig bestimmt.
So würde ich die Kontrolle machen ;)
Gruß Trampel

Bezug
                
Bezug
Geraden: einsetzen
Status: (Frage) beantwortet Status 
Datum: 15:23 Sa 24.02.2007
Autor: jane882

Aufgabe
...

wenn ich jetzt die gerade hätte:

(1 2 3) + Lamnda (-1 3 1)
und

( 2 4 0)+ Mü (2 -6 -2)

Dann muss ich für Lamnda und Mü z.b. einmal 2 einsetzen und einmal 3 ?

x= 2
Punkt A( -1/8/5)
Punkt B( 6/8/-4)

x= 3
Punkt A(-2/11/6)
Punkt B( 8 /-14/-6)

so??? und nun?

Bezug
                        
Bezug
Geraden: Stützvektor verwenden
Status: (Antwort) fertig Status 
Datum: 15:33 Sa 24.02.2007
Autor: Loddar

Hallo Jane!


Wenn Du diese beiden Geraden gegeben und bereits festgestellt hast, dass die Richtungsvektoren linear abhängig sind, setzt Du einfach den Stützvektor der einen Gerade in die Geradengleichung der anderen Geraden ein:

[mm] $g_1 [/mm] \ : \ [mm] \vec{x} [/mm] \ = \ [mm] \blue{\vektor{1\\2\\3}+\lambda*\vektor{-1\\3\\1}}$ [/mm]

[mm] $g_2 [/mm] \ : \ [mm] \vec{x} [/mm] \ = \ [mm] \red{\vektor{2\\4\\0}}+ \mu*\vektor{2\\-6\\-2}$ [/mm]



[mm] $\Rightarrow$ $\red{\vektor{2\\4\\0}} [/mm] \ = \ [mm] \blue{\vektor{1\\2\\3}+\lambda*\vektor{-1\\3\\1}}$ [/mm]

Löse hier nun die 3 Gleichungen nach [mm] $\lambda [/mm] \ = \ ...$ um. Solltest Du 3-mal dasselbe Ergebnis erhalten, liegt der Punkt [mm] $A_2 [/mm] \ [mm] \left(2;4;0\right)$ [/mm] auch auf der Geraden [mm] $g_1$ [/mm] und beide Geraden [mm] $g_1$ [/mm] und [mm] $g_2$ [/mm] sind identisch.

Bei unterschiedlichen [mm] $\lambda$-Werten [/mm] sind die beiden Geraden nicht identisch; sondern "nur" parallel.


Gruß
Loddar


Bezug
                                
Bezug
Geraden: danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:25 Sa 24.02.2007
Autor: jane882

danke:) das habe ich verstanden! kannst du mir vielleicht auch bei meiner anderen aufgaben (post: schnittpunkt) kurz helfen:(



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]