matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenGerade v. PRF in Schulnotation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - Gerade v. PRF in Schulnotation
Gerade v. PRF in Schulnotation < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade v. PRF in Schulnotation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Mo 28.04.2014
Autor: gummibaum

Aufgabe
Gegeben ist eine Gerade [m]g[/m] im [m]\IR^2[/m] durch [m]g: \begin{pmatrix} 8 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ 3 \end{pmatrix}[/m]. Berechnen Sie die Schulnotation von [m]g[/m].


Hallo zusammen,

mein Vorschlag ist es, die allgemeine Parameterdarstellung (Punkt-Richtungs-Form, PRF) einer Geraden [m]g[/m] im [m]\IR^2[/m] mit [m]g: \vec y + \lambda * \vec r = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \lambda \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}[/m] allgemein aufzuschreiben.

Vorab, die Schulnotation soll [m]y=ax + b[/m] sein.

Wir haben also einen y-Achsenabschnitt [m]\begin{pmatrix} 8 \\ 5 \end{pmatrix}[/m], somit setze ich die allgemeine Gleichung der ersten Komponente gleich Null. (siehe PRF)

Damit habe ich erstmal nach [m]\lambda[/m] aufgelöst [m]y_1 + \lambda r_1 = 0 \gdw \lambda = -\bruch{y_1}{r_1}[/m]

Nun [m]\lambda[/m] in die zweite Gleichung (mit der zweiten Komponente: [mm] y_2) [/mm] eingesetzt, ergibt: [m]y_2 -\bruch{y_1}{r_1}*r_2 := b[/m] (y-Achsenabschnitt) und die Steigung [m]a[/m] ist der Quotient der Komponenten des Richtungvektors [m]\vec r[/m], also [m]a = \bruch{r_2}{r_1}[/m]

Somit gilt für die allgemeine Geradengleichung (in Schulnotation) folgende PRF: [m]y = \bruch{r_2}{r_1} * x + y_2 -\bruch{y_1}{r_1}*r_2[/m]

Jetzt dürfte man die Komponenten aus der PFR der gegebenen Gerade ablesen, nämlich: [m]y_1 = 8, y_2 = 5[/m] und [m]r_1 = -2, r_2 = 3[/m] und diese in die hergeleitete PFR einsetzen, es gilt demnach:

[m]y = -\bruch{3}{2}*x + 5 - (-\bruch{8}{2})*3 = -\bruch{3}{2}*x + 5 + (4 * 3) = -\bruch{3}{2}*x + 17[/m]

Stimmt das soweit?

        
Bezug
Gerade v. PRF in Schulnotation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 Mo 28.04.2014
Autor: Steffi21

Hallo, deine Gerade ist ok, Steffi

Bezug
                
Bezug
Gerade v. PRF in Schulnotation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:59 Mo 28.04.2014
Autor: gummibaum

Vielen Dank!

Bezug
        
Bezug
Gerade v. PRF in Schulnotation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Mo 28.04.2014
Autor: leduart

Hallo
deine Gerade ist zwar ok aber dein Weg dahin soch sehr kompliziert-
2 schnelle Wege
1- 2 Punkte der Geraden z.B ^lambda = 0 und 1  in y=ax+b einsetzen.
2. wie du richtig schreibst die Steigung der Richtungsvektors ist a,
für [mm] \lambda=4 [/mm] ist x=0 y=b
an deinem Weg ist nichts falsch, nur warum so umständlich? allerdings (8,5) den y Achsenabschnitt zu nennen ist falsch.
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]