matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenGerade und Ebenen Beziehungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - Gerade und Ebenen Beziehungen
Gerade und Ebenen Beziehungen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade und Ebenen Beziehungen: Tipps ? Lösungswege ?
Status: (Frage) beantwortet Status 
Datum: 16:06 Mi 05.09.2007
Autor: Zimti_do

Aufgabe
a) Bestimme die Gleichung der Ebene E= ABC mit A (8/0/0), B (11/1/0), C (4/0/1) in einer Parameterdarstellung.

b) Prüfe ob die Punkte P (1/2/3) und R (0/0/5) auf der Ebene liegen.

c) Stelle die Gleichung der Geraden g = (PR) auf und bestimme den Schnittpunkt mit der Ebene. (Durchstoßpunkt durch die Ebene E).

d) Bestimme a so, dass g mit g : x (->, kommt übers x) = Vektor (3/0/7)+Vektor  t (a/2/2) ; a  [mm] \varepsilon \IR [/mm]

1) parallel zu E ist ! 2) E schneidet !

Hallo,

Mein Sohn schreibt Montag eine Klassenarbeit über Geraden und Ebenen und hat dazu ein Übungszettel von seiner Leherin bekommen. Leider weiß er kaum was und ich weiß selber nicht so viel, da ich kein Abitur habe und nur einen Hauptschulabschluß habe (was damals ja noch gut war ;) ).

Ich wäre euch sehr verbunden, wenn ihr mir zu den Aufgaben die Lösungswege und ergebnisse sagen könntet, sodass ich mich mit meinem Sohn nochmal am Wochenende damit hinsetzen kann.

Danke. :).

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Gerade und Ebenen Beziehungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Mi 05.09.2007
Autor: Kroni

Hi,

normalerweise lösen wir ja keine Aufgaben einfach so. Wir bräuchten normalerweise schon Lösungsansätze, damit wir dann kontrolliren können und dann sagen können, wo Fehler sind.

> a) Bestimme die Gleichung der Ebene E= ABC mit A (8/0/0), B
> (11/1/0), C (4/0/1) in einer Parameterdarstellung.

Hier brauchst du einen Stützvektor und zwei Richtungsvektoren, die man mit den drei Punkten herstellen kann. Dazu dann B-A als Vektor rechnen, dann hat man den ersten RV, dann C-A rechnen, dann hat man den zweiten.

>  
> b) Prüfe ob die Punkte P (1/2/3) und R (0/0/5) auf der
> Ebene liegen.

Hier einmal gucken, ob es zwei parameter gibt, die die Ebenengleichung erfüllen, so dass die oben genannten Punkte herauskommen.

>  
> c) Stelle die Gleichung der Geraden g = (PR) auf und
> bestimme den Schnittpunkt mit der Ebene. (Durchstoßpunkt
> durch die Ebene E).

Hier steht eigentlich schon alles.

>  
> d) Bestimme a so, dass g mit g : x (->, kommt übers x) =
> Vektor (3/0/7)+Vektor  t (a/2/2) ; a  [mm]\varepsilon \IR[/mm]
>
> 1) parallel zu E ist ! 2) E schneidet !

Hier sollte sich dein Sohn auch noch einige Gedanken machen, was es heißt, wenn eine Gerade parallel zu einer Ebene ist!

>  Hallo,
>  
> Mein Sohn schreibt Montag eine Klassenarbeit über Geraden
> und Ebenen und hat dazu ein Übungszettel von seiner Leherin
> bekommen. Leider weiß er kaum was und ich weiß selber nicht
> so viel, da ich kein Abitur habe und nur einen
> Hauptschulabschluß habe (was damals ja noch gut war ;) ).

Ich mache auch hier nochmal den Vorschlag: Dein Sohn sollte rechnen, dann die Ergebnisse hier posten und dann können wir auf die eventuellen Fehler deines Sohnes eingehen.

>  
> Ich wäre euch sehr verbunden, wenn ihr mir zu den Aufgaben
> die Lösungswege und ergebnisse sagen könntet, sodass ich
> mich mit meinem Sohn nochmal am Wochenende damit hinsetzen
> kann.
>  
> Danke. :).
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


LG

Kroni


Bezug
                
Bezug
Gerade und Ebenen Beziehungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:32 Mi 05.09.2007
Autor: Zimti_do

Hallo,

Danke für deine Antwort.

Ich werd mein Sohn dann mal an die Aufgaben setzen.

Und entweder heute Abend oder Morgen die Ergebnisse hier reinposten. :).

Ok ?

Bezug
                        
Bezug
Gerade und Ebenen Beziehungen: jederzeit
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:35 Mi 05.09.2007
Autor: Loddar

Hallo Zimti_do,

[willkommenmr] !!


Klar ist das okay, der MatheRaum steht Euch 24h am Tag zur Verfügung ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]