matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenGerade in Exponentialfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Gerade in Exponentialfunktion
Gerade in Exponentialfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade in Exponentialfunktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:56 Di 05.10.2010
Autor: lisa11

Aufgabe
Bestimmen Sie die Funktionsgleichung y= C*a^kx resp. y= [mm] C*x^a [/mm] die zur
Geraden (-2/5) x + 2 passt.

guten tag,

leider weiss ich nicht wie man den Ansatz macht.
Kann mir jemand helfen?

Gruss E.W.

        
Bezug
Gerade in Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:00 Di 05.10.2010
Autor: schachuzipus

Hallo,

was bedeutet: "... , die zur Gerade ... 'passt' ... "?

Gruß

schachuzipus

Bezug
                
Bezug
Gerade in Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:10 Di 05.10.2010
Autor: lisa11

es sind Geraden dargestellt eine davon ist y= -2/5*x + 2

man moechte wissen wie die Funktionsgleichung y = C*a^kx respektive y = [mm] C*x^a [/mm] heisst die zu dieser Geraden gehoert.



Bezug
                        
Bezug
Gerade in Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:13 Di 05.10.2010
Autor: schachuzipus

Aha! [kopfkratz3]



Bezug
                        
Bezug
Gerade in Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:14 Di 05.10.2010
Autor: Gonozal_IX

Huhu,

das macht die Aufgabe nicht wirklich klarer.
Was meinst du mit "die zu dieser Geraden gehört"?

Deine gegebene Funktion ist offensichtlich eine lineare nach oben um 2 verschobene Funktion.
Die anderen sind entweder linear, nicht verschoben oder exponentiell.... da passt was nicht.

mFG,
Gono.

Bezug
                                
Bezug
Gerade in Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:17 Di 05.10.2010
Autor: lisa11

ich  meine damit es ist eine Gerade gegeben mit y = -(2/5)*x + 2

die geht durch die Punkte (0/2) und (5/0) , ich habe mit diesen Punkten eine Geradengleichung aufgestellt jetzt sollte ich die Funktionsgleichung
y = C*a^kx finden.
Kann ich -2/5 * x + 2 = C*a^kx setzen?

Es ist eine Gerade geplottet und man will eine Funktionsgleichung mit y= C*a^kx dazu sehen

Bezug
                                        
Bezug
Gerade in Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:23 Di 05.10.2010
Autor: schachuzipus

Mensch Meier,

Gib der ORIGINALWORTLAUT der Aufgabe wider!!

> ich meine damit es ist eine Gerade gegeben mit y =
> -(2/5)*x + 2
>
> die geht durch die Punkte (0/2) und (5/0) , ich habe mit
> diesen Punkten eine Geradengleichung aufgestellt jetzt
> sollte ich die Funktionsgleichung
> y = C*a^kx finden.

Mit welchen Eigenschaften denn?

Soll die Exponentialfunktion auch durch die 2 Punkte gehen?

Oder wie?


> Kann ich -2/5 * x + 2 = C*a^kx setzen?

Du kannst alles machen, aber ob das im Sinne der Aufgabenstellung ist, weiß kein Mensch!

>
> Es ist eine Gerade geplottet und man will eine
> Funktionsgleichung mit y= C*a^kx dazu sehen

Aha!

Gruß

schachuzipus


Bezug
                                                
Bezug
Gerade in Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:37 Di 05.10.2010
Autor: lisa11

Aufgabe
ich finde es auch verwirrend schicke das Aufgabenblatt

schicke das Aufgabenblatt

Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
Bezug
                                                        
Bezug
Gerade in Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:42 Di 05.10.2010
Autor: schachuzipus

Hallo nochmal,

trotz Aufgabenblatt bleibt in meinen Augen die Aufgabenstellung sinnleer, solange nicht geklärt ist, welche mathematische Eigenschaft der Aufgabensteller mit "passen" meint.

Mit ist keine solche mathemat. Eigenschaft bekannt.

Gruß

schachuzipus

Bezug
                                                                
Bezug
Gerade in Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:44 Di 05.10.2010
Autor: lisa11

passen man meint eine Tangente die an eine Exponentialfunktion gelegt wird und man will die Exponentialfunktion finden.

Bezug
                                                                        
Bezug
Gerade in Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:50 Di 05.10.2010
Autor: schachuzipus

Aha, wir kommen der Sache näher.

Und in welchem Punkt soll die Gerade denn Tangente an die gesuchte Funktion sein?

Gruß

schachuzipus

Bezug
                                                        
Bezug
Gerade in Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:45 Di 05.10.2010
Autor: Karl_Pech

Hallo lisa11,


Wegen dem Urheberrecht wäre es besser, Du würdest die Aufgabenstellung hier ins Forum abschreiben. Ich habe den Dateianhang jetzt erstmal gesperrt.



Viele Grüße
Karl




Bezug
        
Bezug
Gerade in Exponentialfunktion: will mitraten
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:35 Di 05.10.2010
Autor: Roadrunner

Hallo Lisa!


Kann es sein, dass die gegebene Gerade eine Tangente an die gesuchte Exponentialfunktion sein soll?


Gruß vom
Roadrunner


Bezug
                
Bezug
Gerade in Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:42 Di 05.10.2010
Autor: lisa11

ja so ist das tut mir leid vielleicht druecke ich mich falsch aus.

Bezug
        
Bezug
Gerade in Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 Di 05.10.2010
Autor: Fulla

Hallo,

es ist auf dem Aufgabenzettel zwar nur schwer zu erkennen, aber an der Hochachse steht [mm]\ln(y)[/mm]!
Deine Geradengleichung lautet also [mm]-\frac{2}{5}x+2=\ln(y)[/mm]. Löse das nach $y$ auf, und du bekommst die gesuchte Funktionsgleichung.

Wenn ich das richtig sehe, ist bei den anderen Bildern auch die $x$-Achse logarithmisch...

Lieben Gruß,
Fulla



Bezug
                
Bezug
Gerade in Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Di 05.10.2010
Autor: lisa11

das gibt dann y = e^((-2/5)*x +3)

was mache ich wenn beide Aschsen logarithmisch sind?

also y = -(3/7)*x+3

ist es ln(y) = -(3/7)ln(x)+ ln(3)?

Bezug
                        
Bezug
Gerade in Exponentialfunktion: noch umformen
Status: (Antwort) fertig Status 
Datum: 17:55 Di 05.10.2010
Autor: Roadrunner

Hallo Lisa!



> das gibt dann y = e^((-2/5)*x +3)

[ok] Nun noch auf die gewünschte Form gemäß Aufgabenstellung bringen (z.B. mittels MBPotenzgesetzen).


Gruß vom
Roadrunner



Bezug
                                
Bezug
Gerade in Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:58 Di 05.10.2010
Autor: lisa11

danke ich muss das nicht mehr umformen

Bezug
                        
Bezug
Gerade in Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:34 Di 05.10.2010
Autor: lisa11

anbei meine Skizze

Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
Bezug
                        
Bezug
Gerade in Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:35 Mi 06.10.2010
Autor: lisa11

Habe ich den anderen Loesungsansatz falsch aufgestellt?

Bezug
                        
Bezug
Gerade in Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:20 Mi 06.10.2010
Autor: angela.h.b.


>  
> was mache ich wenn beide Aschsen logarithmisch sind?
>  
> also y = -(3/7)*x+3
>  
> ist es ln(y) = -(3/7)ln(x)+ ln(3)?

Hallo,

ja, genau.

Wenn Du das Ganze "e hoch" nimmst, hast Du

[mm] e^{ln(y)} [/mm] = [mm] e^{-(3/7)ln(x)+ ln(3)}=e^{-(3/7)ln(x)}*e^{ln(3)} [/mm]

<==>

[mm] y=3*x^{-3/7}. [/mm]

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]