matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeGerade/Ebene Parallel etc
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Gerade/Ebene Parallel etc
Gerade/Ebene Parallel etc < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade/Ebene Parallel etc: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 Sa 16.11.2013
Autor: elektroalgebra93

Aufgabe
[mm] \vektor{-1 \\ -1\\ 1} [/mm] * ( [mm] \vektor{x \\ y \\ z} [/mm] - [mm] \vektor{1 \\ 0 \\ 0} [/mm] ) = 0

[mm] \vec{g}= \vektor{2 \\ -2\\ 1} [/mm] + [mm] \lambda \vektor{2 \\ -1\\ 0} [/mm]

Hallo,

Ich soll da den Abstand der Gerade von der Ebene berechnen und bestimmen op se Parallel, sich schneiden oder gerade in einer Ebene liegen. Das hab ich folgendermasse gemacht:

[mm] \vec{n} [/mm] * [mm] \vec{r} [/mm] = [mm] \vektor{-1 \\ -1\\ 1} [/mm] * [mm] \vektor{2 \\ -1\\ 0} [/mm] = -1
Kann das sein ? ein negatives Resultat?

Abstand: [mm] d=\bruch{\vektor{-1 \\ -1\\ 1} * (\vektor{2 \\ -2\\ 1} -\vektor{1 \\ 0 \\ 0} ) }{\wurzel{(-1)^{2}+(-1)^{2}+1^{2}}} [/mm]   =    [mm] \bruch{2}{\wurzel{3}} [/mm]

Nunja, jetzt hab ich den Abstand, aber weiss noch immer nicht ob se paralle,sich schneidet usw ist..

Könnte mir da jemand bitte helfen, wäre sehr dankbar!
Danke

        
Bezug
Gerade/Ebene Parallel etc: Antwort
Status: (Antwort) fertig Status 
Datum: 07:35 So 17.11.2013
Autor: angela.h.b.


> [mm]\vektor{-1 \\ -1\\ 1}[/mm] * ( [mm]\vektor{x \\ y \\ z}[/mm] - [mm]\vektor{1 \\ 0 \\ 0}[/mm]
> ) = 0

>

> [mm]\vec{g}= \vektor{2 \\ -2\\ 1}[/mm] + [mm]\lambda \vektor{2 \\ -1\\ 0}[/mm]

>

> Hallo,

>

> Ich soll da den Abstand der Gerade von der Ebene berechnen
> und bestimmen op se Parallel, sich schneiden oder gerade in
> einer Ebene liegen.


Hallo,

Du sollst sicher zuerst nachschauen, ob sie sich schneiden, parallel oder identisch sind, und danach im Falle der Parallelität den Abstand berechnen. (Bei sich schneidenden Geraden ist doch das Nachdenken über ihren Abstand sinnlos.)

> Das hab ich folgendermasse gemacht:

>

> [mm]\vec{n}[/mm] * [mm]\vec{r}[/mm] = [mm]\vektor{-1 \\ -1\\ 1}[/mm] * [mm]\vektor{2 \\ -1\\ 0}[/mm]
> = -1
> Kann das sein ? ein negatives Resultat?


Warum nicht?

In dem Falle der Parallelität sind Normalenvektor der Ebene und Richtungsvektor der Geraden orthogonal.
Dies hast Du mit dem Skalarprodukt geprüft und herausbekommen, daß sie nicht orthogonal sind. (Sonst wäre 0 herausgekommen.)

Also schneiden sich Gerade und Ebene, und jegliche Abstandsberechnung erübrigt sich.

Stattdessen könntest Du aber den Schnittpunkt ausrechnen.

Wie gesagt: hier ist keine Abstandsberechnung zu machen.



>

> Abstand: [mm]d=\bruch{\vektor{-1 \\ -1\\ 1} * (\vektor{2 \\ -2\\ 1} -\vektor{1 \\ 0 \\ 0} ) }{\wurzel{(-1)^{2}+(-1)^{2}+1^{2}}}[/mm]
> = [mm]\bruch{2}{\wurzel{3}}[/mm]

Du hast jetzt den Abstand von P(2|2|-1) von der Ebene berechnet.

LG Angela





>

> Nunja, jetzt hab ich den Abstand, aber weiss noch immer
> nicht ob se paralle,sich schneidet usw ist..

>

> Könnte mir da jemand bitte helfen, wäre sehr dankbar!
> Danke


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]