Geometrische Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:19 Mo 04.02.2013 | Autor: | Fry |
Aufgabe | Aus einer Urne mit schwarzen und roten Kugeln - der Anteil der roten Kugeln sei [mm]p\in(0, 1)[/mm]. Ziehen Sie mit Zurücklegen immer wieder eine Kugel und notieren die Farbe. [mm]X_1[/mm] bezeichne
die Anzahl an schwarzen Kugeln, bevor zum ersten Mal eine rote gezogen werde, und für
k > 1 bezeichne [mm]X_k[/mm] die Anzahl an schwarzen Kugeln zwischen der (k − 1)-ten und der k-ten roten Kugel.
(a) Zeigen Sie, dass die Zufallsvariablen [mm](X_k)_{k\ge 1}[/mm] identisch verteilt sind, und bestimmen Sie deren Verteilung.
(b)Zeigen Sie, dass [mm]X_1 ,...,X_n[/mm] für [mm]n\ge 2[/mm] stochastisch unabhängig sind. |
Hallo,
ich stehe bei dieser Aufgabe auf dem Schlauch.
Mir ist klar, dass [mm] $X_1$ [/mm] geometrisch verteilt mit Parameter p, also [mm] $P(X_1=l)=(1-p)^{l}p$ [/mm] mit [mm] $l\in \mathbb N_0$
[/mm]
Aber wie kann ich beweisen, dass die andere [mm] X_i [/mm] auch Geo(p)-verteilt sind.
Könnte mir jemand nen Tipp geben?
Bei b komm ich ebenso wenig weiter...
Viele Grüße
Fry
|
|
|
|
Hallo Fry,
> Aus einer Urne mit schwarzen und roten Kugeln - der Anteil
> der roten Kugeln sei [mm]p\in(0, 1)[/mm]. Ziehen Sie mit
> Zurücklegen immer wieder eine Kugel und notieren die
> Farbe. [mm]X_1[/mm] bezeichne
> die Anzahl an schwarzen Kugeln, bevor zum ersten Mal eine
> rote gezogen werde, und für
> k > 1 bezeichne [mm]X_k[/mm] die Anzahl an schwarzen Kugeln
> zwischen der (k − 1)-ten und der k-ten roten Kugel.
> (a) Zeigen Sie, dass die Zufallsvariablen [mm](X_k)_{k\ge 1}[/mm]
> identisch verteilt sind, und bestimmen Sie deren
> Verteilung.
> (b)Zeigen Sie, dass [mm]X_1 ,...,X_n[/mm] für [mm]n\ge 2[/mm] stochastisch
> unabhängig sind.
>
> Hallo,
> ich stehe bei dieser Aufgabe auf dem Schlauch.
> Mir ist klar, dass [mm]X_1[/mm] geometrisch verteilt mit Parameter
> p, also [mm]P(X_1=l)=(1-p)^{l}p[/mm] mit [mm]l\in \mathbb N_0[/mm]
> Aber wie
> kann ich beweisen, dass die andere [mm]X_i[/mm] auch Geo(p)-verteilt
> sind.
Man kann das natürlich beliebig einfach / kompliziert beweisen (je nachdem, wie stringent es sein soll).
Prinzipiell ist es aber so, dass wenn gerade die $(k-1)$-te rote Kugel gezogen wurde, wieder genau die Ausgangssituation vorliegt: Man zieht solange, bis die nächste (d.h. $k$-te) rote Kugel kommt. Das entspricht einer geometrischen Verteilung, daher ist [mm] $X_k$ [/mm] geometrisch verteilt.
> Könnte mir jemand nen Tipp geben?
> Bei b komm ich ebenso wenig weiter...
Auch hier anschaulich: Zum Zeitpunkt, wo du die (k-1)-te rote Kugel gezogen hast, sind die Ergebnisse der vorherigen Ziehungen irrelevant. Sie haben ja keinen Einfluss auf das Ergebnis von [mm] $X_k$. [/mm] ("Gedächtnislosigkeit geometrische Verteilung)
Mathematischer geht das Ganze vermutlich, indem du die Züge mit Zufallsvariablen [mm] $Y_1,Y_2,Y_3,...$ [/mm] modellierst, die unabhängig und identisch verteilt sind mit Bernoulli-Verteilung.
[mm] $Y_i [/mm] = 1$ mit Wahrscheinlichkeit p entspricht einer roten Kugel.
Dann definierst du [mm] $N_0 [/mm] := 0$, [mm] $N_k [/mm] := [mm] \inf\{n \ge N_{k-1}: Y_n = 1\}$ [/mm] und [mm] $X_k [/mm] := [mm] N_k [/mm] - [mm] N_{k-1} [/mm] + 1$.
Nun kannst du die Verteilungsaussagen nachrechnen.
Viele Grüße,
Stefan
|
|
|
|