matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieGeometrische Ungleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Topologie und Geometrie" - Geometrische Ungleichungen
Geometrische Ungleichungen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geometrische Ungleichungen: Problem 2
Status: (Frage) beantwortet Status 
Datum: 20:32 Fr 25.12.2009
Autor: Joones

Aufgabe
Die Längen aufeinanderfolgender Seiten eines Vierecks seinen a, b, c, d. F bezeichne die Fläche des Vierecks.

Zeigen Sie, dass

F [mm] \le \bruch{1}{4} \* [/mm] (a + b) [mm] \* [/mm] (c + d)

Nun hab eich verschiedene Vierecken ausprobiert mit Zahlenwerten und bin drauf gekommen, dass beim Quadrat zum Beispiel die Gleichugn genau gleich ist.

Wie genau ich nun aber dieses "zeigen" verstehen soll, weiß ich leider nicht... ist damit beweisen gemeint? könnte mir da jemand einen Ansatz geben oder gar eine Lösung, falls es zu trivial ist? ;)

Vielen Dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt bisher.

        
Bezug
Geometrische Ungleichungen: Idee mit Parkettierung
Status: (Antwort) fertig Status 
Datum: 23:02 Fr 25.12.2009
Autor: Al-Chwarizmi


> Die Längen aufeinanderfolgender Seiten eines Vierecks
> seien a, b, c, d.
> F bezeichne die Fläche des Vierecks.
> Zeigen Sie, dass
>  
> F [mm]\le \bruch{1}{4} \*[/mm] (a + b) [mm]\*[/mm] (c + d)
>  Nun habe ich verschiedene Vierecken ausprobiert mit
> Zahlenwerten und bin drauf gekommen, dass beim Quadrat zum
> Beispiel die Gleichung genau erfüllt ist.
>
> Wie genau ich nun aber dieses "zeigen" verstehen soll,
> weiß ich leider nicht... ist damit beweisen gemeint?
> könnte mir da jemand einen Ansatz geben oder gar eine
> Lösung, falls es zu trivial ist? ;)
>  
> Vielen Dank!


Hallo Joones,

mit "zeigen" ist "beweisen" gemeint. Falls die
Gleichung beim Quadrat exakt erfüllt ist, wäre
dies vielleicht ein Hinweis, die Vierecksfläche
mit der eines geeigneten Quadrats zu verglei-
chen ...
Ich habe eine etwas andere Idee: Mit einem belie-
bigen ebenen (nicht überschlagenen) Viereck kann
man die Ebene parkettieren. Schau mal []hier nach
und probier das auch mal mit selber ausgeschnit-
tenen Pappeschnipseln aus.
Wenn du nun vier Vierecke betrachtest, die in
einer solchen Parkettierung an einer Ecke
zusammen stoßen, dann bilden diese ein 8-Eck,
zu welchem man ein flächengleiches Parallelo-
gramm finden kann. Durch Betrachtung der Seiten-
längen a,b,c,d des ursprunglichen Vierecks und
jener dieses Parallelogramms sollte man zur
gewünschten Abschätzung kommen.

LG    Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]