matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGeometrische Folge/ Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Grenzwerte" - Geometrische Folge/ Reihe
Geometrische Folge/ Reihe < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geometrische Folge/ Reihe: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:56 Fr 05.10.2007
Autor: Sabrinalie

Aufgabe
Aufgabe:
Berechnen Sie:

9+81+729+6561+...+531441+4782969=

Guten Morgen!
Ich komme bei dieser Aufgabe einfach nicht weiter...Ich weiß weder welche Formel ich genau nehmen soll noch wie ichdas genau berechne...

Ich bin nur so weit das ich weiß das q=9 ist.

Danke für eure Antwort
Sabrina



Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:


        
Bezug
Geometrische Folge/ Reihe: Formel
Status: (Antwort) fertig Status 
Datum: 11:16 Fr 05.10.2007
Autor: Roadrunner

Hallo Sabrina,

[willkommenmr] !!


Kennst Du die Summenformel für geometrische Folgen?

[mm] $$S_n [/mm] \ = \ [mm] \summe_{k=0}^{n}a_0*q^k [/mm] \ = \ [mm] a_0*q^0+a_0*q^1+a_0*q^2+...+a_0*q^n [/mm] \ = \ [mm] a_0*\bruch{q^n-1}{q-1}$$ [/mm]

Deine Summe lässt sich auch darstellen als:
$$9+81+729+6561+...+531441+4782969 \ = \ [mm] 9^1+9^2+9^3+...+9^7 [/mm] \ = \ [mm] 1*9^1+1*9^2+1*9^3+...+1*9^7$$ [/mm]

Diese nun in die Formel einsetzen ... aber aufgepasst: in unserem Fall musst Du das Glied [mm] $a_0*q^0 [/mm] \ = \ [mm] a_0 [/mm] \ = \ 1$ wieder abziehen.


Gruß vom
Roadrunner


Bezug
                
Bezug
Geometrische Folge/ Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:41 Fr 05.10.2007
Autor: Sabrinalie

Danke für die schnelle Antwort...

Soweit ich es verstanden haben würde ich folgendes in die Formel einsetzen:

= [mm] 9\cdot{}\bruch{9^7-1}{9-1} [/mm]

= 5380839


Super das habe ich schonmal verstanden,
die Lösung besagt auch das dies richtig ist.


Die nächste Aufgaben wäre
[mm] \bruch{1}{8} [/mm] + [mm] (\bruch{1}{8})^2 [/mm] + [mm] (\bruch{1}{8})^3 [/mm] + [mm] (\bruch{1}{8})^4 [/mm] + [mm] (\bruch{1}{8})^5 [/mm] +...


Meine Lösung:

[mm] \bruch{1}{8} [/mm] * [mm] \bruch{0,125^5-1}{0,125-1} [/mm]
= 0,142852...

Dies scheint aber leider falsch zu sein...
RIchtige Lösung wäre [mm] \bruch{1}{7} [/mm]

könntet ihr mir sagen wo der Fehler lag?

Bezug
                        
Bezug
Geometrische Folge/ Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Fr 05.10.2007
Autor: itse

Hallo,

tipp mal 1 geteilt durch 7 in den Taschenrechner ein.

[mm] $\bruch{1}{7}$ [/mm] = 0,14285...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]