matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationGeneral/Universalsubstitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - General/Universalsubstitution
General/Universalsubstitution < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

General/Universalsubstitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Di 24.03.2009
Autor: ggg

Hallo,
ich hänge gerade in einer Aufgabe. Die Stammfunktion von
[mm] \integral {\bruch{1}{cos(x)} dx} [/mm] ist doch  [mm] \integral {\bruch{1}{cos(x)} dx}=ln|tan^{2}(\bruch{x}{2})|+C. [/mm]
Ich wollte die Stammfunktion mit [mm] sin(x)=\bruch{2z}{1+z²} [/mm]
und [mm] cos(x)=\bruch{1-z²}{1+z²}, [/mm] wobei [mm] z=tan(\bruch{x}{2})\Rightarrow dx=\bruch{2dz}{1+z²} [/mm]
Meine Rechnung sieht so aus:
[mm] \integral {\bruch{1}{cos(x)} dx} [/mm]
Ich habe [mm] cos(x)=\bruch{1-z²}{1+z²} [/mm] mit u substituiert,also gilt u:= [mm] cos(x)=\bruch{1-z²}{1+z²}, [/mm]
und somit
[mm] =\integral \bruch{1+z²}{1-z²}\*\bruch{du}{1+z²}==\integral \bruch{1}{1-z²}\*\bruch{du}{1} [/mm] da ja laut den trigonometrischen Pythagoras 1-z²=sin²(x) ist, gilt dann:
[mm] \integral {\bruch{1}{sin²(x)} dx}, [/mm]
da ja  [mm] \frac{1}{\sin²(x)}=\frac{1}{2}\cdot{}\left[\frac{1}{\cos^4\left(\frac{x}{2}\right)}\cdot{}\frac{1}{\tan²\left(\frac{x}{2}\right)}\right] [/mm] wird dann aus
[mm] \integral {\bruch{1}{sin²(x)} }= \frac{1}{2}\cdot{}\int{\frac{1}{\cos^4\left(\frac{x}{2}\right)}\cdot{}\frac{1}{\tan²\left(\frac{x}{2}\right)} \ dx} [/mm]

Anschließend habe ich noch eine Substitution durchgeführt
mit [mm] h:=tan(\bruch{x}{2}), [/mm] sodass sich ergibt [mm] dh\*cos^{4}(\bruch{x}{2})=dx, [/mm]
also
[mm] \frac{1}{2}\int{\frac{1}{\cos^4\left(\frac{x}{2}\right)}\cdot{}\frac{1}{\{\tan²\left(\frac{x}{2}\right)}} \ \dx}=\integral{\bruch{1}{cos^{4}(\bruch{x}{2})}\* \bruch{dh\*cos^{4}(\bruch{x}{2})}{h²}dx} [/mm] = [mm] \integral {\bruch{dh}{h²} }=ln|h²|+C=ln|tan²(\bruch{x}{2})|+C [/mm]


Ist das so richtig? Das wäre echt nice für eine Antwort:-)

        
Bezug
General/Universalsubstitution: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Di 24.03.2009
Autor: Melanzane

Also ich habe die probe gemacht und deine Stammfunktion abgeleitet und dann müsste ja 1/cos herauskommen, ich habe da 2/sinx herausbekommen.
es kann allerdings sein, dass ich einen rechenfehler gemacht habe.

glg

Bezug
        
Bezug
General/Universalsubstitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Di 24.03.2009
Autor: ggg

Laut meiner Formelsammlung ist die Ableitung von tan(x) gleich 1/cos²(x) also denk ich das es mit dem sinus nicht stimmen kann.

Bezug
                
Bezug
General/Universalsubstitution: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Di 24.03.2009
Autor: schachuzipus

Hallo ggg,

> Laut meiner Formelsammlung ist die Ableitung von tan(x)
> gleich 1/cos²(x) also denk ich das es mit dem sinus nicht
> stimmen kann.

Doch das stimmt:

Beachte [mm] $\left[\ln\left(\tan^2\left(\frac{x}{2}\right)\right)\right]'=\frac{1}{\tan^2\left(\frac{x}{2}\right)}\cdot{}2\cdot{}\tan\left(\frac{x}{2}\right)\cdot{}\frac{1}{2}\cdot{}\frac{1}{\cos^2\left(\frac{x}{2}\right)}$ [/mm]

[mm] $=\frac{1}{\tan\left(\frac{x}{2}\right)\cdot{}\cos^2\left(\frac{x}{2}\right)}=\frac{1}{\sin\left(\frac{x}{2}\right)\cdot{}\cos\left(\frac{x}{2}\right)}$ [/mm]

[mm] $=\frac{2}{\sin(x)}$ [/mm] nach dem Halbwinkelsatz (Additionstheorem)

Deine Stammfunktion von oben ist also nicht richtig

LG

schachuzipus



Bezug
        
Bezug
General/Universalsubstitution: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Di 24.03.2009
Autor: Somebody


> Hallo,
>  ich hänge gerade in einer Aufgabe. Die Stammfunktion von
>   [mm]\integral {\bruch{1}{cos(x)} dx}[/mm] ist doch  [mm]\integral {\bruch{1}{cos(x)} dx}=ln|tan^{2}(\bruch{x}{2})|+C.[/mm]
> Ich wollte die Stammfunktion mit [mm]sin(x)=\bruch{2z}{1+z²}[/mm]
>  und [mm]cos(x)=\bruch{1-z²}{1+z²},[/mm] wobei
> [mm]z=tan(\bruch{x}{2})\Rightarrow dx=\bruch{2dz}{1+z²}[/mm]

Warum machst Du Dir eigentlich soviel Arbeit mit diesem Integral? Substituiere doch einfach [mm] $z=\sin(x)$, [/mm] dann erhältst Du das Integral [mm] $\int \frac{1}{1-z^2}\,dz$. [/mm] Partialbruchzerlegung, integrieren und [mm] $\sin(x)$ [/mm] für $z$ einsetzen: fertig.

Bezug
                
Bezug
General/Universalsubstitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:48 Mi 25.03.2009
Autor: ggg

Danke für den Tipp.
Ich wird es gleich mal mit Partialbruchzerlegung ausprobieren, ansonsten kann nicht in Ruhe einschlafen


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]