matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle AnalysisGenau einmal Diffbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis" - Genau einmal Diffbar
Genau einmal Diffbar < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Genau einmal Diffbar: Frage, Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:07 Mi 09.04.2014
Autor: HappyHaribo

Aufgabe
Gibt es eine Funktion die genau einmal Differenzierbar ist?
Wenn ja, welche?

Hallo,

gibt es eine Funktion [mm] $f:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ [/mm] bzw. [mm] $g:\mathbb{R}\to\mathbb{R}$ [/mm] die genau einmal Diffbar ist?
Ich weiß es gibt welche die an keinem Punkt Diffbar sind, z.b die Weierstrassfunktion. Aber ich hab auch mit Hilfe von google keine Funktion gefunden die genau einmal Diffbar ist und ihre Ableitung dann nicht mehr Diffbar ist gefunden.
Und ich suche eine Funktion, nicht wie die Betragsfunktion die dann nur an einem Punkt nicht diffbar ist, sondern überall nicht stetig.
Vlt. könnt ihr mir helfen. :)
Danke schon mal



        
Bezug
Genau einmal Diffbar: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:19 Mi 09.04.2014
Autor: DieAcht

Hallo HappyHaribo,


Habe ich es richtig verstanden? Du suchst nach zwei Abbildungen

      [mm] f:\IR^2\to\IR [/mm] und [mm] g:\IR\to\IR [/mm]

mit $f$ und $g$ genau einmal differenzierbar und $f'$ und $g'$ nicht stetig?
Das sind Funktionen, die nicht stetig differenzierbar sind, wobei
man mit den Begriffen bei $f$ aufpassen sollte.

Das Ende ist ein wenig verwirrend.


Gruß
DieAcht

Bezug
                
Bezug
Genau einmal Diffbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Mi 09.04.2014
Autor: HappyHaribo

Ok, also ich will jetzt erst mal eine Funktion [mm] f:\mathbb{R}\to\mathbb{R} [/mm] die genau ein mal diffbar ist. Also die Ableitung f'(x) soll nicht mehr diffbar sein.

Bezug
                        
Bezug
Genau einmal Diffbar: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Mi 09.04.2014
Autor: Richie1401

Hallo,

$f(x)=x|x|$ liefert das von dir gewünschte.


Beste Grüße.

Bezug
                                
Bezug
Genau einmal Diffbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Mi 09.04.2014
Autor: HappyHaribo

Also die Ableitung von $f(x)=x*|x|$ ist ja [mm] $f'(x)=|x|+\frac{x^2}{|x|}$ [/mm] und [mm] $f''(x)=\frac{2x}{|x|}$ [/mm] oder nicht?
Ich will so eine Funktion deren Ableitung wie die Weierstrassfunktion nirgends diffbar ist. :)

Bezug
                                        
Bezug
Genau einmal Diffbar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Mi 09.04.2014
Autor: leduart

Hallo
siehe meine Antwort
Gruss leduart

Bezug
                        
Bezug
Genau einmal Diffbar: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Mi 09.04.2014
Autor: leduart

Hallo
integriere eine überall stetige, nirgends differenzierbare fkt. von 0 bis x
(etwa den Realteil der Kochschen Schneeflockenkurve.
eine einfache geschlossene Darstellung mit analytischen fkt. gibt es nätürlich nicht.D,h. du hast die Grenzfkt einer an immer mehr Punkten nicht differenzierbaren fkt.
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]