matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesGenau einen Fixpunkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - Genau einen Fixpunkt
Genau einen Fixpunkt < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Genau einen Fixpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:51 Mi 25.07.2007
Autor: Wehm

Aufgabe
$f(x,y):=[ [mm] ln(2+||x,y||_\infty), arctan(1+||x,y||_\infty) [/mm] ]$
[mm] f:R^2 [/mm] -> [mm] R^2 [/mm]

Zu zeigen, dass f(x,y) genau einen Fixpunkt hat.  

Hallo

Ich ewiß, dass das mit dem Banachschen Fixpunktsatz geht. Und Mittelwertsatz is auch anzuwenden

Z.B. hier die Rechnung [mm] $|f_2(x,y) [/mm] - [mm] f_2(a,b) [/mm] | [mm] \le [/mm] L * ||(x,y) - [mm] (a,b)_\infty [/mm] = | [mm] arctan(1+||x,y||_\infty [/mm] - [mm] arctan(1+||x,y||_\infty) [/mm] | = |arctan'(z)| | [mm] ||(x,y)||_\infty [/mm] - [mm] ||(a,b)||_\infty [/mm] | = [mm] |\frac{1}{z}|* [/mm] | [mm] ||(x,y)||_\infty [/mm] - [mm] ||(a,b)||_\infty| \le \frac{1}{1+z^2} [/mm] ||(x,y)-(a,b) [mm] ||_\infty$. [/mm]

Jetzt soll aber gelten [mm] \frac{1}{1+z^2} \le [/mm] 0,5

Warum 0,5? Ist es immer f'(z) [mm] \le \frac{1}{n} [/mm] wenn die Abbildung auf [mm] R^n? [/mm]

Ich weiß man muss das selbe nochmal für den ln(..) machen, aber auch da setzt man das kleiner 1/2. Da dachte ich aber, das hat etwas mit der 2+ zu tun. Woher kommen die 0,5 wirklich?


Grüße
wehm

        
Bezug
Genau einen Fixpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Do 26.07.2007
Autor: rainerS

Hallo wehm,

> [mm]f(x,y):=[ \ln(2+||x,y||_\infty), \arctan(1+||x,y||_\infty) ][/mm]
>  
> [mm]f:R^2[/mm] -> [mm]R^2[/mm]
>  
> Zu zeigen, dass f(x,y) genau einen Fixpunkt hat.
>  
> Ich ewiß, dass das mit dem Banachschen Fixpunktsatz geht.
> Und Mittelwertsatz is auch anzuwenden

Der Banachsche Fixpunktsatz hat als Voraussetzung, dass f eine kontrahierende Abbildung ist, dass es also eine Zahl [mm]\lambda<1[/mm] gibt, sodass also für beliebige Punkte [mm]u,v\in \IR^2[/mm] gilt: [mm]\|f(u)-f(v)\| \leq \lambda \|u-v\|[/mm]. Diese Voraussetzung musst du nachweisen. Dazu benutzt du hier den Mittelwertsatz.

> Z.B. hier die Rechnung [mm]|f_2(x,y) - f_2(a,b) | \le L * ||(x,y) - (a,b)_\infty = | arctan(1+||x,y||_\infty - arctan(1+||x,y||_\infty) | = |arctan'(z)| | ||(x,y)||_\infty - ||(a,b)||_\infty | = |\frac{1}{z}|* | ||(x,y)||_\infty - ||(a,b)||_\infty| \le \frac{1}{1+z^2} ||(x,y)-(a,b) ||_\infty[/mm].

[notok]

Da hast du mindestens zwei Gleichungs-/Ungleichungsketten wild durcheinander gemischt.

Definiere zur Abkürzung
[mm]f_1(x,y) = \ln(2+\|x,y\|_\infty)[/mm],
[mm] f_2(x,y) = \arctan(1+\|x,y\|_\infty)[/mm]
und behandle die beiden Teile getrennt.

Zunächste berechne ich
[mm]|f_1(x,y)-f_1(a,b)| = \bigl|\ln(2+\|x,y\|_\infty) - \ln(2+\|a,b\|_\infty\bigr|[/mm].

Nach dem Mittelwertsatz gibt es einen Punkt [mm]z_1[/mm] zwischen [mm]2+\|x,y\|_\infty[/mm] und [mm]2+\|a,b\|_\infty[/mm], sodass
[mm] \ln(2+\|x,y\|_\infty) - \ln(2+\|a,b\|_\infty) = \ln'(z_1) ((2+\|x,y\|_\infty) - (2+|a,b\|_\infty)) = \bruch{1}{z_1} (\bigl|\|x,y\|_\infty-|a,b\|_\infty)[/mm].

Da [mm]z_1[/mm] zwischen [mm]2+\|x,y\|_\infty[/mm] und [mm]2+\|a,b\|_\infty[/mm] liegt, ist [mm]|z_1| \geq2[/mm] und
[mm]|f_1(x,y)-f_1(a,b)| = \left|\bruch{1}{z_1}\right| \bigl|\|x,y\|_\infty-\|a,b\|_\infty\bigr| \leq \bruch{1}{2} \bigl|\|x,y\|_\infty-\|a,b\|_\infty\bigr|[/mm].

Das Gleiche mache ich mit [mm]f_2[/mm]. Dort gibt es ein [mm]z_2[/mm] zwischen [mm]1+\|x,y\|_\infty[/mm] und [mm]1+\|a,b\|_\infty[/mm] ([mm]\Rightarrow z_2\geq1[/mm]), sodass
[mm] |f_2(x,y)-f_2(a,b)| = |\arctan'(z_2)| \cdot\bigl|(1+\|x,y\|_\infty) - (1+\|a,b\|_\infty)\bigr| = \left|\bruch{1}{1+z_2^2}\right| \bigl|\|x,y\|_\infty-\|a,b\|_\infty\bigr|\leq \bruch{1}{2}\bigl|\|x,y\|_\infty-\|a,b\|_\infty\bigr|[/mm].

Dann brauchst du noch die Dreiecksungleichung
[mm]\bigl|\|x,y\|_\infty-\|a,b\|_\infty\bigr| \leq \|(x,y)-(a,b)\|_\infty [/mm]
und
[mm]\|(x,y)-(a,b)\|_\infty \leq \|(x,y)-(a,b)\|_2 [/mm],
sodass
[mm]\| f(x,y) -f(a,b) \|_2 = \sqrt{|f_1(x,y)-f_1(a,b)|^2 + |f_2(x,y)-f_2(a,b)|^2} \leq \sqrt{\bruch{1}{4} \|(x,y)-(a,b)\|_2^2 + \bruch{1}{4} \|(x,y)-(a,b)\|_2^2} = \bruch{1}{2} \|(x,y)-(a,b)\|_2[/mm]. QED

Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]