matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikGemeinsame Verteilung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Gemeinsame Verteilung
Gemeinsame Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gemeinsame Verteilung: Berechnung der Varianz
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:49 Mo 26.11.2007
Autor: tillll

Aufgabe
Siehe Hochgeladene Datei.

Hallo,

hat einer von euch eine Idee, wie man Z und deren Varianz ermittelt?

Die Varianz von y ist ja recht einfach:
E(Y)= -1 * [mm] \bruch{5}{6} [/mm] + 0 * [mm] \bruch{9}{32} [/mm] + 2 * [mm] \bruch{13}{32} [/mm] = 0,5
(Die W'keiten habe ich über die Randverteilungen ermittelt)

Var(Y) = [mm] E(X^2) [/mm] * [mm] E(X)^2 [/mm] = 3,5625

Aber was ist Z???

Danke.


ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Gemeinsame Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Mi 28.11.2007
Autor: luis52

Moin  tillll,

deine Aufgabe hat mich einiges Kopfzerbrechen gekostet. Ich wollte
eigentlich frueher antworten, indem ich auf ein altes Prograemmchen
zurueckgreife, das solche Aufgaben im Handumdrehen loest. Pustekuchen,
das Programm war sch...

Jetzt habe ich mich noch mal daran gesetzt und es neu geschrieben. Tut
mir Leid, dass es zu spaet ist, aber mich hat die Chose weitergebracht,
und vielleicht interessiert sich ja jemand irgendwann einmal fuer die Loesung.

> hat einer von euch eine Idee, wie man Z und deren Varianz ermittelt?

>

> Die Varianz von y ist ja recht einfach:
>  E(Y)= -1 * [mm]\bruch{5}{6}[/mm] + 0 * [mm]\bruch{9}{32}[/mm] + 2 *
> [mm]\bruch{13}{32}[/mm] = 0,5
>  (Die W'keiten habe ich über die Randverteilungen
> ermittelt)

Irgendwie ist hier der Wurm drin. *Ich* erhalte

[mm] $\operatorname{E}[Y]= [/mm] -1 [mm] \ast\bruch{10}{32} [/mm] + 0 [mm] \ast \bruch{9}{32}+ 2\ast \bruch{13}{32} [/mm] = 0,5$


>

> Var(Y) = [mm]E(X^2)[/mm] * [mm]E(X)^2[/mm] = 3,5625

>

und

[mm] $\operatorname{Var}(Y) [/mm] = [mm] \operatorname{E}(X^2)-\operatorname{E}(X)^2 [/mm] = [mm] 1.9375-0.5^2=1.6875$ [/mm]


> Aber was ist Z???

>

Das was in der Aufgabenstellung steht, naemlich das Minimum von $X$ und
$Y$.  Realisiert sich fuer $(X,Y)$ beispielsweise $(-1,4)$, so nimmt
$Z$ den Wert $-1$ an.  Du musst nun feststellen, welche Werte $Z$
annimmt und mit welcher Wahrscheinlichkeit das geschieht.  Da du in
Teil c) noch die Kovarianz von $Z$ und $Y$ bestimmen sollst, empfiehlt
es sich, die gemeinsame Wahrscheinlichkeitsfunktion von $Z$ und $Y$ zu
bestimmen, also $P(Y=y,Z=z)$.  (Dank stundenlangen Nachdenkens ueber
die Programmierung (stolz, beweihraeucher!)  ;-)) ist sie in der
folgenden Tabelle gegeben:


[mm] \begin{tabular} {@{}cccc@{}} \toprule &\multicolumn{3}{c}{z}\\ y & -1 & 0 & 2 \\ \hline -1 & 10/32 & 0 & 0 \\ 0 & 0 & 9/32 & 0 \\ 2 & 0 & 4/32 & 9/32 \\ \bottomrule \end{tabular} [/mm]

Mithin ist $P(Z=-1)=10/32$, $P(Z=0)=13/32$, $P(Z=2)=9/32$, woraus sich
[mm] $\operatorname{E}[Z]=0.25$, $\operatorname{E}[Z^2]=1.4375$ [/mm] und [mm] $\operatorname{Var}[Z]=1.375$ [/mm] ergibt.

Kommen wir zu c) Aus der (sauguten) Tabelle kann man entnehmen:
[mm] $P(Y\ast [/mm] Z=0)=13/32$, [mm] $P(Y\ast [/mm] Z=1)=10/32$, [mm] $P(Y\ast [/mm] Z=4)=9/32$, woraus
folgt [mm] $\operatorname{E}[Y\ast [/mm] Z]=1.4375$. Also ist [mm] $\operatorname{Cov}[Y,Z]=\operatorname{E}[Y\ast Z]-\operatorname{E}[Y]\ast\operatorname{E}[Z]=1.4375-0.5\ast [/mm] 0.25=1.3125$.


lg Luis

                                        

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]