matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAussagenlogikGeltung einer Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Aussagenlogik" - Geltung einer Gleichung
Geltung einer Gleichung < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geltung einer Gleichung: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 14:25 Fr 13.05.2011
Autor: mobey

Aufgabe
Seien u, v, w Vektoren in R3. Zeigen Sie, dass die Gleichung u · (v × w) = (u × v) · w gilt.

Ich rechne es aus, da kommt bei mir am Ende nicht das Gleiche raus. Zwar kommen die gleichen Buchstaben (Zahlen raus), aber dann halt nicht an der Stelle, wo sie sein sollten. Wäre sehr dankbar für jede Hilfe.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Geltung einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 Fr 13.05.2011
Autor: Al-Chwarizmi


> Seien u, v, w Vektoren in R3. Zeigen Sie, dass die
> Gleichung u · (v × w) = (u × v) · w gilt.
>  Ich rechne es aus, da kommt bei mir am Ende nicht das
> Gleiche raus. Zwar kommen die gleichen Buchstaben (Zahlen
> raus), aber dann halt nicht an der Stelle, wo sie sein
> sollten.

Was meinst du mit " nicht an der Stelle, wo sie sein sollten" ?

Nutze die Rechengesetze (Kommutativ- , Assoziativ-
und Distributivgesetz), um die Terme zu ordnen.

LG   Al-Chw.


Bezug
                
Bezug
Geltung einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Fr 13.05.2011
Autor: mobey

Ja, dass ich z.b. P (1,2,3) und auf der anderen Seite ist der P (2,3,1) Damit ist es ja nicht bewiesen, dass die eine Formel gleich der anderen ist.

Bezug
                        
Bezug
Geltung einer Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:14 Fr 13.05.2011
Autor: MorgiJL

sorry, antwort falsch eingefügt...siehe die andere antwort von mir, danke.


Bezug
        
Bezug
Geltung einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Fr 13.05.2011
Autor: MorgiJL

Hey...

also....

> Seien u, v, w Vektoren in R3. Zeigen Sie, dass die
> Gleichung u · (v × w) = (u × v) · w gilt.

Warum Zahlen einsetzen?...das u, v und w sind doch vektoren, also [mm] $\vec{u} [/mm] =  [mm] \vektor{u_1 \\ u_2 \\ u_3 }$, [/mm] analog für [mm] $\vec{v}$ [/mm] und [mm] $\vec{w}$. [/mm]

Jetzt nimmst du einfach die Definitionen fürs Skalarprodukt und Kreuzprodukt und rechnest es aus, dann sollte das gleiche rauskommen.

Grüße!
Jan


Bezug
        
Bezug
Geltung einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Fr 13.05.2011
Autor: ullim

Hi,

[mm] u\cdot(v\times{w})=u_x*(v_yw_z-v_zw_y)+u_y*(v_zw_x-v_xw_z)+u_z*(v_xw_y-v_yw_x) [/mm] und

[mm] (u\times{v})\cdot{w}=w_x*(u_yv_z-u_zv_y)+w_y*(u_zv_x-u_xv_z)+w_z*(u_xv_y-u_yv_x) [/mm]

und jetzt beide Ausdrücke vergleichen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]